1 |
Hierarchical occlusion culling for arbitrarily-meshed height fieldsEdmondson, Paul Michael 30 September 2004 (has links)
Many graphics applications today have need for high-speed 3-D visualization of height fields. Most of these applications deal with the display of digital terrain models characterized by a simple, but vast, non-overlapping mesh of triangles. A great deal of research has been done to find methods of optimizing such systems. The goal of this work is to establish an algorithm to efficiently preprocess a hierarchical height field model that enables the real-time culling of occluded geometry while still allowing for classic terrain-rendering frameworks. By exploiting the planar-monotone characteristics of height fields, it is possible to create a unique and efficient occlusion culling method that is optimized for terrain rendering and similar applications. Previous work has shown that culling is possible with certain regularly-gridded height field models, but not until now has a system been shown to work with all height fields, regardless of how their meshes are constructed. By freeing the system of meshing restrictions, it is possible to incorporate a number of broader height field algorithms with widely-used applications such as flight simulators, GIS systems, and computer games.
|
2 |
Hierarchical occlusion culling for arbitrarily-meshed height fieldsEdmondson, Paul Michael 30 September 2004 (has links)
Many graphics applications today have need for high-speed 3-D visualization of height fields. Most of these applications deal with the display of digital terrain models characterized by a simple, but vast, non-overlapping mesh of triangles. A great deal of research has been done to find methods of optimizing such systems. The goal of this work is to establish an algorithm to efficiently preprocess a hierarchical height field model that enables the real-time culling of occluded geometry while still allowing for classic terrain-rendering frameworks. By exploiting the planar-monotone characteristics of height fields, it is possible to create a unique and efficient occlusion culling method that is optimized for terrain rendering and similar applications. Previous work has shown that culling is possible with certain regularly-gridded height field models, but not until now has a system been shown to work with all height fields, regardless of how their meshes are constructed. By freeing the system of meshing restrictions, it is possible to incorporate a number of broader height field algorithms with widely-used applications such as flight simulators, GIS systems, and computer games.
|
3 |
Stylistic control of ocean water simulationsRoot, Christopher Wayne 15 May 2009 (has links)
This thesis presents a new method for controlling the look of an ocean water
simulation for the purpose of creating cartoon-styled fluid animations. Two popular
techniques to simulate fluid, a statistical height field method via the Fast Fourier
Transform and the Stable Fluid method for dynamic effects, are connected smoothly via
a blend domain, thus allowing a height field to drive a physical simulation. In addition,
the height field can be stylized by utilizing a keyframing technique on wave amplitudes
defined in the Fourier domain, allowing for creative control of the fluid’s surface. Such
stylized height fields therefore can be simulated to exhibit natural fluid motion as well as
to produce dynamic effects such as breaking waves that were previously unattainable in
common fluid pipelines.
|
Page generated in 0.0266 seconds