• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 17
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 63
  • 23
  • 19
  • 16
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity

Chamberlain, S.E., Gonzàlez-Gonzàlez, I.M., Wilkinson, K.A., Konopacki, F.A., Kantamneni, Sriharsha, Henley, J.M., Mellor, J.R. January 2012 (has links)
No / Phosphorylation or SUMOylation of the kainate receptor (KAR) subunit GluK2 have both individually been shown to regulate KAR surface expression. However, it is unknown whether phosphorylation and SUMOylation of GluK2 are important for activity-dependent KAR synaptic plasticity. We found that protein kinase C-mediated phosphorylation of GluK2 at serine 868 promotes GluK2 SUMOylation at lysine 886 and that both of these events are necessary for the internalization of GluK2-containing KARs that occurs during long-term depression of KAR-mediated synaptic transmission at rat hippocampal mossy fiber synapses. Conversely, phosphorylation of GluK2 at serine 868 in the absence of SUMOylation led to an increase in KAR surface expression by facilitating receptor recycling between endosomal compartments and the plasma membrane. Our results suggest a role for the dynamic control of synaptic SUMOylation in the regulation of KAR synaptic transmission and plasticity.
62

Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis

Konopacki, F.A., Jaafari, N., Rocca, D.L., Wilkinson, K.A., Chamberlain, S.E., Rubin, P., Kantamneni, Sriharsha, Mellor, J.R., Henley, J.M. January 2011 (has links)
No / The surface expression and regulated endocytosis of kainate (KA) receptors (KARs) plays a critical role in neuronal function. PKC can modulate KAR trafficking, but the sites of action and molecular consequences have not been fully characterized. Small ubiquitin-like modifier (SUMO) modification of the KAR subunit GluK2 mediates agonist-evoked internalization, but how KAR activation leads to GluK2 SUMOylation is unclear. Here we show that KA stimulation causes rapid phosphorylation of GluK2 by PKC, and that PKC activation increases GluK2 SUMOylation both in vitro and in neurons. The intracellular C-terminal domain of GluK2 contains two predicted PKC phosphorylation sites, S846 and S868, both of which are phosphorylated in response to KA. Phosphomimetic mutagenesis of S868 increased GluK2 SUMOylation, and mutation of S868 to a nonphosphorylatable alanine prevented KA-induced SUMOylation and endocytosis in neurons. Infusion of SUMO-1 dramatically reduced KAR-mediated currents in HEK293 cells expressing WT GluK2 or nonphosphorylatable S846A mutant, but had no effect on currents mediated by the S868A mutant. These data demonstrate that agonist activation of GluK2 promotes PKC-dependent phosphorylation of S846 and S868, but that only S868 phosphorylation is required to enhance GluK2 SUMOylation and promote endocytosis. Thus, direct phosphorylation by PKC and GluK2 SUMOylation are intimately linked in regulating the surface expression and function of GluK2-containing KARs.
63

Einfluss des zellulären Prion-Proteins auf die LDH-Expression unter oxidativen Stressbedingungen / Influence of the cellular prion protein to the LDH expression under oxidative stress conditions

Schenkel, Sara 23 November 2015 (has links)
Die genaue physiologische Funktion des zellulären Prion-Proteins (PrPC) ist noch immer nicht vollständig verstanden. Eine mögliche Funktion des PrPC auf das neuronale Überleben nach einem hypoxischen oder ischämischen Insult wird diskutiert. In einem Vorversuch zeigten sich nach zerebraler Ischämie deutlich größere Infarktvolumina in den Gehirnen von Prion-Knock-Out-Mäusen im Vergleich zu denen der Wild-Typ-Mäuse. Das Identifizieren der molekularen Mechanismen der PrPC-vermittelten Neuroprotektion ist daher von großem Interesse und machte die Etablierung eines Zell-Modells erforderlich. Neuere Studien konnten einen Einfluss des zellulären Prion-Proteins auf die Glykolyse nachweisen. Unter Sauerstoffmangelbedingungen kommt es zu einer vermehrten Bildung von Laktat durch das Enzym Laktat-Dehydrogenase (LDH). Neurone benötigen unter hypoxischen oder ischämischen Bedingungen dieses Laktat als Energiesubstrat. Je mehr Laktat den Neuronen zur Verfügung steht, umso höher ist das neuronale Überleben. In dieser Arbeit konnte die Beteiligung der Laktat-Dehydrogenase an der durch das zelluläre Prion-Protein vermittelten Neuroprotektion nach Hypoxie nachgewiesen werden. Das Ziel dieser Arbeit bestand darin, mögliche Unterschiede der LDH-Expression in WT-Zellen, Prnp0/0-Zellen und HEK-293-Zellen unter normalen und hypoxischen Bedingungen in vitro zu untersuchen. Die Expression der LDH war unter hypoxischen Bedingungen in den WT-Zellen im Vergleich zu den Prnp0/0-Zellen deutlich höher. Dies konnte auch in PrPC-überexprimierenden HEK-293-Zellen nach Hypoxie gezeigt werden. Ebenso konnte nachgewiesen werden, dass Hypoxie zu einem größeren Schaden des Tubulinzytoskelettes in Prnp0/0-Zellen führt als in WT-Zellen, was eine neuroprotektive Wirkung von PrPC vermuten lässt. Eine direkte oder indirekte Interaktion von LDH-A und PrPC konnte durch eine Co-Immunpräzipitation in HEK-293-Zellen nachgewiesen werden. Die genauen Mechanismen über die PrPC möglicherweise zu einer vermehrten Laktat-Produktion führt, sind noch nicht eindeutig identifiziert und müssen noch näher untersucht werden. Zusammengefasst kann gesagt werden, dass die erhobenen Daten die Vermutung verstärken, dass das Enzym LDH und sein Produkt Laktat in die durch das zelluläre Prion-Protein vermittelte Neuroprotektion nach Hypoxie involviert sind. Es ist das erste Mal, dass gezeigt wurde, durch welchen Mechanismus PrPC zur Neuroprotektion beiträgt.

Page generated in 0.0274 seconds