• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dilution refrigerator : Design, construction and performance

Ferguson, A. J. L. January 1986 (has links)
No description available.
2

Enhancements of a Combustion Vessel to Determine Laminar Flame Speeds of Hydrocarbon Blends with Helium Dilution at Elevated Temperatures and Pressures

Plichta, Drew 03 October 2013 (has links)
Fuel flexibility in gas turbines is of particular importance because of the main fuel source, natural gas. Blends of methane, ethane, and propane are big constituents in natural gas and consequently are of particular interest. With this level of importance comes the need for baseline data such as laminar flame speed of said fuels. While flame speeds at standard temperature and pressure have been extensively studied in the literature, experimental data at turbine-like conditions are still lacking currently. This thesis discusses the theory behind laminar flames; new data acquisition techniques; temperature and pressure capability improvements; measured flame speeds; and a discussion of the results including stability analysis. The measured flame speeds were those of methane, ethane, and propane fuel blends, as well as pure methane, at an elevated pressure of 5 atm and temperatures of 298 and 473 K, using a constant-volume, cylindrical combustion vessel. The current Aramco mechanism developed in conjunction with National University of Ireland Galway compared favorably with the data, while the literature data showed discrepancies at stoichiometric to rich conditions. An in-depth flame speed uncertainty analysis yielded a wide range of values from 0.5 cm/s to 21.5 cm/s. It is well known that high-pressure experiments develop flame instabilities when air is used as the oxidizer. In this study, the hydrodynamic instabilities were restrained by using a high diluent-to-oxygen ratio. The thermal-diffusive instabilities were inhibited by using helium as the diluent. To characterize this flame stability, the Markstein length and Lewis number were calculated for the presented conditions. The resultant positive Markstein lengths showed a low propensity of flame speed to flame stretch, while the larger-than-unity Lewis numbers showed the relatively higher diffusivity of helium to that of nitrogen.
3

A comparison of helium dilution and plethysmography in measuring static lung volumes

Guldbrand, Anna January 2008 (has links)
<p>In order to examine the usefulness of the multi breath helium dilution method (MB) it was compared to the single breath helium dilution method (SB) and body plethysmography (BP). Residual volume (RV), total lung capacity (TLC) and vital capacity (VC) were measured in seventeen subjects with obstructive (11) or restrictive (6) lung disease and four normal subjects.</p><p>With information from professional literature and current periodicals, advantages and disadvantages with all three methods were compared. ANOVA and Student's t-test were performed on the measurement results.</p><p>The results of the statistical tests tell us there are differences among the methods in the group of obstructive patients. They also reveal a notable difference between the MB and SB methods when measuring the same parameter. In addition, it was noted that none of the existing sets of prediction equations fulfill the requirements established on high quality lung function testing.</p><p>Although a thorough evaluation of the reproducibility of the method is still required, it appears to be a viable alternative to body plethysmography. We claim that measuring the above mentioned static lung volumes with only the single breath helium dilution method cannot be considered a satisfactory practice.</p>
4

A comparison of helium dilution and plethysmography in measuring static lung volumes

Guldbrand, Anna January 2008 (has links)
In order to examine the usefulness of the multi breath helium dilution method (MB) it was compared to the single breath helium dilution method (SB) and body plethysmography (BP). Residual volume (RV), total lung capacity (TLC) and vital capacity (VC) were measured in seventeen subjects with obstructive (11) or restrictive (6) lung disease and four normal subjects. With information from professional literature and current periodicals, advantages and disadvantages with all three methods were compared. ANOVA and Student's t-test were performed on the measurement results. The results of the statistical tests tell us there are differences among the methods in the group of obstructive patients. They also reveal a notable difference between the MB and SB methods when measuring the same parameter. In addition, it was noted that none of the existing sets of prediction equations fulfill the requirements established on high quality lung function testing. Although a thorough evaluation of the reproducibility of the method is still required, it appears to be a viable alternative to body plethysmography. We claim that measuring the above mentioned static lung volumes with only the single breath helium dilution method cannot be considered a satisfactory practice.
5

Laminar flame speed and stretch sensitivity of hydrocarbon fuels at high preheat, pressure and vitiation

Kochar, Yash N. 27 August 2014 (has links)
This thesis investigates the laminar flame speed of C₁-C₃ alkanes and their binary mixtures at conditions of interest in natural gas based gas turbines viz. high temperature, pressure and dilution. Laminar flame speed has been found useful not only for validating chemical kinetics mechanisms but also for developing empirical scaling laws for practical combustion systems. The thesis addresses the lack of laminar flame speed data of C₁-C₃ alkanes at preheat (300-650 K), pressure (1-10 atm) and significant oxidizer dilution (15-21 vol% O₂). Over 400 measurements are reported over a wide range of conditions along with comparison to predictions from leading chemical mechanisms. Unstretched flame speed measurements were performed using a modified Bunsen flame technique based on reaction zone area from chemiluminescence imaging, whereas the strain sensitivity measurements were performed using a bluff-body stabilized stagnation flame with high resolution PIV. These measurements are used to: (i) discern the uncertainties associated with the measurements, (ii) understand the effect of fuel mixture and vitiation on flame speed, and (iii) validate the performance of the leading chemical kinetics mechanisms. Extensive testing shows the unstretched flame speed measurements from the modified Bunsen technique are reasonably accurate. Vitiation studies for methane and propane flames at high preheat show the reduction in flame speed results primarily from the thermal effect of the diluent and that the relative change in flame speed from the undiluted mixture is well correlated to the fractional change in the adiabatic flame temperature over a range of conditions. Significant difference in the measured and predicted flame speeds were observed for rich, atmospheric pressure, propane and lean, high pressure, methane/ethane mixtures with dilution. This highlights possible avenues for improvements in the chemical kinetics mechanisms. Systematic errors were also identified in the Bunsen flame measurements at certain conditions, such as for rich flames with dilution, indicating a need for better understanding of the Bunsen flame technique at these conditions. The difference in the measured and predicted flame speed does not show any clear correlation with the flame height or the strain sensitivity of the mixture. Finally previously proposed mixing rules for estimating flame speed of fuel mixtures from pure fuel components are shown to be reasonably accurate over a range of pressure, reactant temperature and dilution conditions.

Page generated in 0.0809 seconds