• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 142
  • 35
  • 32
  • 23
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 272
  • 272
  • 272
  • 64
  • 50
  • 36
  • 36
  • 36
  • 33
  • 32
  • 31
  • 30
  • 30
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Effects of high dose chemotherapy on the bone marrow microenvironment

Hall, Brett Matthew, January 2002 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains ix, 173 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 163-169).
82

Role of membrane-type 1 matrix metalloproteinase in hematopoietic stem/progenitor cell trafficking

Shirvaikar, Neeta Chandan. January 2010 (has links)
Thesis (Ph.D.)--University of Alberta, 2010. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Medicine. Title from pdf file main screen (viewed on April 27, 2010). Includes bibliographical references.
83

Activation of multiple hemopoietic growth factor genes in Abelson virus transformed myeloid cells

Abraham, Samuel D. M. January 1988 (has links)
The stringent requirement for hemopoietic growth factors (HGF) in the induction of hemopoiesis in vitro has raised questions as to their possible role(s) in leukemogenesis. Several recent clinical studies have shown aberrant cell growth factor gene activation in patient derived leukemic cells. Assessment of growth factor activity is often based on in vitro bioactivity assays of conditioned media or body fluids. The specificity of this type of endpoint is, however, open to question due to the overlap in biological activities of many HGFs. In assessing the role of growth factor gene expression in a murine myeloid leukemia model I have used a sensitive RNA detection procedure coupled with a vector-probe system that enables the synthesis of uniformly labelled radioactive DNA probes to detect unambiguously the expression of particular growth factor genes. The Abelson murine leukemia virus (A-MuLV) derived myeloid transformants used in this study had previously been shown to produce a multi-lineage colony stimulating activity (CSA). While these A-MuLV transformants were shown to produce GM-CSF, it seemed likely that the multi-lineage CSA was due to another factor. In addition to confirming the expression of GM-CSF mRNA, I was able to show that the cells of all four A-MuLV transformed lines tested also expressed interleukin-3 mRNA. This finding was strongly corroborated by bio-activity data obtained using the CM from the A-MuLV myeloid transformants. Additional preliminary analysis by bioactivity assays have also shown the possible presence of interleukin-6 (IL-6) and a recently described pre-B cell factor suggesting perhaps a common mechanism underlying the activation of these various growth factor genes. / Medicine, Faculty of / Medical Genetics, Department of / Graduate
84

Role of S6K1 in regulating self-renewal of hematopoietic stem cells and propagatoin of leukemia

Ghosh, Joydeep 15 December 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The development and function of hematopoietic stem cells (HSCs) is regulated by numerous signaling pathways including Akt-mechanistic target of rapamycin complex1 (mTORC1) pathway. Dysregulation of this pathway results in impaired HSC function and contributes to the development of hematologic malignancies. Activated mTORC1 phosphorylates and subsequently activates ribosomal protein S6 kinase 1 (S6K1). To study the role of S6K1 in hematopoiesis as well as leukemogenesis, we used a genetic model of S6K1 deficient mice (S6K1-/-). We found that loss of S6K1 expression in HSCs results in reduction of absolute HSC number in bone marrow (BM). Following chemotherapy, cycling HSCs undergo apoptosis and quiescent HSCs are required to cycle to regenerate the hematopoietic system. S6K1 regulates the quiescence of HSCs and in the absence of S6K1, mice are more susceptible to repeated myeloablative stress. We also observed that loss of expression as well as gain of expression of S6K1 affects the self-renewal ability of HSCs. Interestingly, when we overexpressed S6K1, it also resulted in reduced self-renewal of HSCs. Next, we assessed the role of S6K1 in the propagation of acute myeloid leukemia (AML). The mixed-lineage leukemia (MLL) gene is required for the maintenance of adult HSCs. Translocations in MLL are detected in approximately 5-10% of adult acute leukemia patients and in approximately 70% of acute leukemias in infants. We expressed MLL-AF9 fusion oncoprotein in WT and S6K1-/- hematopoietic stem and progenitor cells (HSC/Ps) and performed serial transplantation. Upon secondary transplantation, recipients of S6K1 deficient AML cells survived significantly longer compared to controls. In vitro, pharmacological inhibition of S6K1 activity resulted in reduced growth of primary human cells expressing MLL-AF9. Both human and murine HSC/Ps expressing MLL-AF9 showed reduced mTORC1 activity upon inhibition of S6K1 suggesting that loss of S6K1 activity results in reduced Akt-mTORC1 activation both upstream and downstream of mTORC1. Overall, our studies establish a critical role of S6K1 activity in the maintenance of HSC function and in the propagation of leukemia.
85

Pharmacological and analytical studies of the cyclin dependent kinase inhibitors

Sallam, Hatem, January 2009 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2009. / Härtill 5 uppsatser.
86

Role of membrane-type 1 matrix metalloproteinase in hematopoietic stem/progenitor cell trafficking

Shirvaikar, Neeta Chandan Unknown Date
No description available.
87

Molecular dissection of Bruton's tyrosine kinase signaling in hematopoietic cells using RNAi /

Heinonen, Juhana E., January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
88

Obstacles and Circumvention Strategies for Hematopoietic Stem Cell Transduction by Recombinant Adeno-associated Virus Vectors

Maina, Caroline Njeri 18 March 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / High-efficiency transduction of hematopoietic stem cells (HSCs) by recombinant adeno-associated virus serotype 2 (AAV2) vectors is limited by (i) inadequate expression of cellular receptor/co-receptors for AAV2; (ii) impaired intracellular trafficking and uncoating in the nucleus; (iii) failure of the genome to undergo second-strand DNA synthesis; and (iv) use of sub-optimal promoters. Systematic studies were undertaken to develop alternative strategies to achieve high-efficiency transduction of primary murine HSCs and lineage-restricted transgene expression in a bone marrow transplant model in vivo. These included the use of: (i) additional AAV serotype (AAV1, AAV7, AAV8, AAV10) vectors; (ii) self-complementary AAV (scAAV) vectors; and (iii) erythroid cell-specific promoters. scAAV1 and scAAV7 vectors containing an enhanced green-fluorescent protein (EGFP) reporter gene under the control of hematopoietic cell-specific enhancers/promoters allowed sustained transgene expression in an erythroid lineage-restricted manner in both primary and secondary transplant recipient mice. Self complementary AAV vectors containing an anti-sickling human beta-globin gene under the control of either the beta-globin gene promoter/enhancer, or the human parvovirus B19 promoter at map-unit 6 (B19p6) were tested for their efficacy in a human erythroid cell line (K562), and in primary murine hematopoietic progenitor cells (c-kit+, lin-). These studies revealed that (i) scAAV2-beta-globin vectors containing only the HS2 enhancer are more efficient than ssAAV2-beta-globin vectors containing the HS2+HS3+HS4 enhancers; (ii) scAAV-beta-globin vectors containing only the B19p6 promoter are more efficient than their counterparts containing the HS2 enhancer/beta-globin promoter; and (iii) scAAV2-B19p6-beta-globin vectors in K562 cells, and scAAV1-B19p6-beta-globin vectors in murine c-kit+, lin- cells, yield efficient expression of the beta-globin protein. These studies suggest that the combined use of scAAV serotype vectors and the B19p6 promoter may lead to expression of therapeutic levels of beta-globin gene in human erythroid cells, which has implications in the potential gene therapy of beta-thalassemia and sickle cell disease.
89

Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitro

Ordemann, Rainer, Jing, Duohui, Fonseca, Ana-Violeta, Alakel, Nael, Fierro, Fernando A., Muller, Katrin, Bornhauser, Martin, Ehninger, Gerhard, Corbeil, Denis 04 January 2016 (has links) (PDF)
Background Hematopoietic stem cells located in the bone marrow interact with a specific microenvironment referred to as the stem cell niche. Data derived from ex vivo co-culture systems using mesenchymal stromal cells as a feeder cell layer suggest that cell-to-cell contact has a significant impact on the expansion, migratory potential and ‘stemness’ of hematopoietic stem cells. Here we investigated in detail the spatial relationship between hematopoietic stem cells and mesenchymal stromal cells during ex vivo expansion. Design and Methods In the co-culture system, we defined three distinct localizations of hematopoietic stem cells relative to the mesenchymal stromal cell layer: (i) those in supernatant (non-adherent cells); (ii) those adhering to the surface of mesenchymal stromal cells (phase-bright cells) and (iii) those beneath the mesenchymal stromal cells (phase-dim cells). Cell cycle, proliferation, cell division and immunophenotype of these three cell fractions were evaluated from day 1 to 7. Results Phase-bright cells contained the highest proportion of cycling progenitors during co-culture. In contrast, phase-dim cells divided much more slowly and retained a more immature phenotype compared to the other cell fractions. The phase-dim compartment was soon enriched for CD34+/CD38− cells. Migration beneath the mesenchymal stromal cell layer could be hampered by inhibiting integrin β1 or CXCR4. Conclusions Our data suggest that the mesenchymal stromal cell surface is the predominant site of proliferation of hematopoietic stem cells, whereas the compartment beneath the mesenchymal stromal cell layer seems to mimic the stem cell niche for more immature cells. The SDF-1/CXCR4 interaction and integrin-mediated cell adhesion play important roles in the distribution of hematopoietic stem cells in the co-culture system.
90

In-vitro study of the cryopreserved intervertebral disc

Chan, Chun-wai., 陳春慧. January 2008 (has links)
published_or_final_version / Orthopaedics and Traumatology / Master / Master of Philosophy

Page generated in 0.1336 seconds