• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Specific sulphation modifications of heparan sulphate regulate distinct aspects of axon guidance in the developing mouse central nervous system

Conway, Christopher January 2009 (has links)
Development of the visual system involves the precise orchestration of neural connections between the retina of the eye, the thalamus (dorsal lateral geniculate nucleus; dLGN) and the superior colliculus (SC). During early development, receptor molecules on the growth cones of retinal ganglion cell (RGC) axons sense molecular guidance cues in the extra cellular matrix (ECM) that define their route and branching behaviour within the visual system. Heparan sulphate proteoglycans (HSPGs) are ECM molecules composed of a core protein and a variable number of disaccharide residues that have been implicated in mediating axon guidance. HSPGs are modified by a number of enzymes that contribute to their structural diversity. Based on this structural diversity; the “heparan sulphate code” hypothesis of Bulow and Hobert (2004) postulated that different HSPG modifications confer different axon navigation responses as the growth cones traverse the local environment. To investigate the roles played by specific modifications of HSPG molecules in the guidance of axons, we examined two lines of mutant mice harbouring mutations in the genes encoding HSPG modifying enzymes, Heparan sulphate-6-O-sulphotransferase-1 (Hs6st1) and Heparan sulphate-2-O-sulphotransferase (Hs2st). These two mutant lines were generated through the use of gene trapping. Previous observations of RGC axon development in the two mutant lines revealed distinct axon guidance errors at the optic chiasm. Loss of Hs6st1 sulphation resulted in RGC axons navigating ectopically into the contralateral eye. Loss of Hs2st sulphation resulted in RGC axons navigating outside the normal boundary of the optic chiasm. Early observations suggested that both Hs2st sulphation and Hs6st1 sulphation have distinct, non-overlapping actions and thus, influence different axon guidance signalling pathways at the optic chiasm. Based on our findings and previous work describing the expression patterns and functions of the chemo-repellent axon guidance molecules, Slit1 and Slit2 at the optic chiasm and their Robo2 in the retina, we formulated the hypothesis of an HSPG sulphation code where Hs2st sulphation is specifically required for Slit1-Robo2 signalling and Hs6st1 sulphation is specifically required for Slit2-Robo2 signalling at the optic chiasm. To further our understanding of the roles Hs2st sulphation and Hs6st1 sulphation have on axon guidance, we looked at a number of key choice points that navigating axons encounter and are known to be influenced by Slit signalling. Further observations of RGC axons at the optic chiasm of Hs2st-/- mutants and Hs6st1-/- mutants showed distinct axon guidance phenotypes, both resulting in statistically significant increases in the width of the optic chiasm at the midline. While Hs6st1 sulphation had no effect on RGC axon navigation within the eye (possibly due to 6-O-sulphation compensation by Hs6st3); the loss of Hs6st1 sulphation at the dLGN resulted in a significant increase in the defasciculation of the optic tract. Observations of other axonal tracts influenced by Slit signalling revealed the importance of Hs2st and Hs6st1 sulphation in aiding callosal axons to successfully traverse the midline in corpus callosum development. Observations of the thalamocortical (TCA)/corticothalamic (CTA) tracts revealed that neither Hs2st sulphation nor Hs6st1 sulphation was required for the development of the mouse TCA tract (the latter may be explained by 6-O-sulphation compensation by Hs6st2). To test whether Hs2st and Hs6st1 enzymes have redundant functions in optic chiasm development, we attempted to create Hs2st-/-/Hs6st1-/- double mutants. A PCR genotyping strategy was developed for the identification of Hs6st1 animals and showed that Hs6st1-/- mutants had high postnatal lethality with only 3% of the offspring surviving to weaning while Hs2st-/-/Hs6st1-/- double mutants all died very early during embryonic development. Observations of Hs2st-/-/Hs6st1+/- mutants and Hs2st+/-/Hs6st1-/- mutants that lacked three of the four Hst alleles showed no differences when compared to single Hst knockouts. Finally, we showed that altered Slit expression at the optic chiasm and Robo expression in the retina could not explain the mutant phenotypes observed in Hs2st-/- mutants and Hs6st1-/- mutants, and therefore we hypothesized that Hs2st sulphation and Hs6st1 sulphation regulate distinct aspects of Slit-Robo signalling at the surface of the navigating axon growth cone.
2

Defining an Intracellular Role of Hepatic Lipase in the Formation of Very Low Density Lipoproteins and High Density Lipoproteins

Bamji-Mirza, Michelle 04 August 2011 (has links)
Hepatic lipase (HL) plays a pivotal role in the catabolism of apolipoprotein (apo)B-containing lipoproteins and high density lipoprotein (HDL) particles through its reported catalytic and non-catalytic extracellular functions. The current study tested the hypothesis that HL expression might impair formation and secretion of hepatic derived very low density lipoproteins (VLDL) and apoA-I (nascent HDL). Stable or transient expression of human HL (hHL) in McA-RH7777 cells resulted in decreased incorporation of [3H]glycerol into cell-associated and secreted (VLDL-associated) 3H-triacylglcyerol (TAG) relative to control cells. Stable expression of catalytically-inactive hHL (hHLSG) also resulted in decreased secretion of VLDL-associated 3H-TAG whereas cell-associated 3H-TAG levels were unchanged. Expression of hHL or hHLSG increased cell-associated 35S-apoB100 with relatively no change in secreted 35S-apoB100. Importantly, hHL or hHLSG expression resulted in reduced 3H-TAG associated with the microsomal lumen lipid droplets (LLD), and increased relative expression of ApoB and genes involved in lipogenesis and fatty acyl oxidation. Transient expression of hHL in HL-null primary hepatocytes, mediated by adenoviral gene transfer, resulted in decreased steady-state levels of cell-associated and secreted apoA-I and reduced rates of synthesis and secretion of 35S-apoA-I. HL-null hepatocytes exhibited increased levels of secreted 35S-apoA-I relative to wildtype hepatocytes while cell-associated 35S-apoA-I levels were normal. Transient expression of a hHL chimera (hHLmt), in which the C-terminus of hHL was replaced with mouse HL sequences, exerted an inhibitory effect on apoA-I production similar to that of hHL even though hHLmt was secreted less effectively than hHL with impaired exit from the endoplasmic reticulum (ER) as compared with hHL. In contrast, stable expression of hHL in McA-RH7777 cells resulted in a dose-dependent increase in cell-associated and secreted 35S-apoA-I levels. These studies demonstrate that hHL has an intracellular (but non-catalytic) role in reducing the content of the LLD and ultimately the buoyancy of secreted VLDL particles, and that the N-terminal sequences of ER-residing hHL directly or indirectly modulates the production and secretion of apoA-I (nascent HDL) from hepatocytes.
3

Defining an Intracellular Role of Hepatic Lipase in the Formation of Very Low Density Lipoproteins and High Density Lipoproteins

Bamji-Mirza, Michelle 04 August 2011 (has links)
Hepatic lipase (HL) plays a pivotal role in the catabolism of apolipoprotein (apo)B-containing lipoproteins and high density lipoprotein (HDL) particles through its reported catalytic and non-catalytic extracellular functions. The current study tested the hypothesis that HL expression might impair formation and secretion of hepatic derived very low density lipoproteins (VLDL) and apoA-I (nascent HDL). Stable or transient expression of human HL (hHL) in McA-RH7777 cells resulted in decreased incorporation of [3H]glycerol into cell-associated and secreted (VLDL-associated) 3H-triacylglcyerol (TAG) relative to control cells. Stable expression of catalytically-inactive hHL (hHLSG) also resulted in decreased secretion of VLDL-associated 3H-TAG whereas cell-associated 3H-TAG levels were unchanged. Expression of hHL or hHLSG increased cell-associated 35S-apoB100 with relatively no change in secreted 35S-apoB100. Importantly, hHL or hHLSG expression resulted in reduced 3H-TAG associated with the microsomal lumen lipid droplets (LLD), and increased relative expression of ApoB and genes involved in lipogenesis and fatty acyl oxidation. Transient expression of hHL in HL-null primary hepatocytes, mediated by adenoviral gene transfer, resulted in decreased steady-state levels of cell-associated and secreted apoA-I and reduced rates of synthesis and secretion of 35S-apoA-I. HL-null hepatocytes exhibited increased levels of secreted 35S-apoA-I relative to wildtype hepatocytes while cell-associated 35S-apoA-I levels were normal. Transient expression of a hHL chimera (hHLmt), in which the C-terminus of hHL was replaced with mouse HL sequences, exerted an inhibitory effect on apoA-I production similar to that of hHL even though hHLmt was secreted less effectively than hHL with impaired exit from the endoplasmic reticulum (ER) as compared with hHL. In contrast, stable expression of hHL in McA-RH7777 cells resulted in a dose-dependent increase in cell-associated and secreted 35S-apoA-I levels. These studies demonstrate that hHL has an intracellular (but non-catalytic) role in reducing the content of the LLD and ultimately the buoyancy of secreted VLDL particles, and that the N-terminal sequences of ER-residing hHL directly or indirectly modulates the production and secretion of apoA-I (nascent HDL) from hepatocytes.
4

Defining an Intracellular Role of Hepatic Lipase in the Formation of Very Low Density Lipoproteins and High Density Lipoproteins

Bamji-Mirza, Michelle 04 August 2011 (has links)
Hepatic lipase (HL) plays a pivotal role in the catabolism of apolipoprotein (apo)B-containing lipoproteins and high density lipoprotein (HDL) particles through its reported catalytic and non-catalytic extracellular functions. The current study tested the hypothesis that HL expression might impair formation and secretion of hepatic derived very low density lipoproteins (VLDL) and apoA-I (nascent HDL). Stable or transient expression of human HL (hHL) in McA-RH7777 cells resulted in decreased incorporation of [3H]glycerol into cell-associated and secreted (VLDL-associated) 3H-triacylglcyerol (TAG) relative to control cells. Stable expression of catalytically-inactive hHL (hHLSG) also resulted in decreased secretion of VLDL-associated 3H-TAG whereas cell-associated 3H-TAG levels were unchanged. Expression of hHL or hHLSG increased cell-associated 35S-apoB100 with relatively no change in secreted 35S-apoB100. Importantly, hHL or hHLSG expression resulted in reduced 3H-TAG associated with the microsomal lumen lipid droplets (LLD), and increased relative expression of ApoB and genes involved in lipogenesis and fatty acyl oxidation. Transient expression of hHL in HL-null primary hepatocytes, mediated by adenoviral gene transfer, resulted in decreased steady-state levels of cell-associated and secreted apoA-I and reduced rates of synthesis and secretion of 35S-apoA-I. HL-null hepatocytes exhibited increased levels of secreted 35S-apoA-I relative to wildtype hepatocytes while cell-associated 35S-apoA-I levels were normal. Transient expression of a hHL chimera (hHLmt), in which the C-terminus of hHL was replaced with mouse HL sequences, exerted an inhibitory effect on apoA-I production similar to that of hHL even though hHLmt was secreted less effectively than hHL with impaired exit from the endoplasmic reticulum (ER) as compared with hHL. In contrast, stable expression of hHL in McA-RH7777 cells resulted in a dose-dependent increase in cell-associated and secreted 35S-apoA-I levels. These studies demonstrate that hHL has an intracellular (but non-catalytic) role in reducing the content of the LLD and ultimately the buoyancy of secreted VLDL particles, and that the N-terminal sequences of ER-residing hHL directly or indirectly modulates the production and secretion of apoA-I (nascent HDL) from hepatocytes.
5

Defining an Intracellular Role of Hepatic Lipase in the Formation of Very Low Density Lipoproteins and High Density Lipoproteins

Bamji-Mirza, Michelle January 2011 (has links)
Hepatic lipase (HL) plays a pivotal role in the catabolism of apolipoprotein (apo)B-containing lipoproteins and high density lipoprotein (HDL) particles through its reported catalytic and non-catalytic extracellular functions. The current study tested the hypothesis that HL expression might impair formation and secretion of hepatic derived very low density lipoproteins (VLDL) and apoA-I (nascent HDL). Stable or transient expression of human HL (hHL) in McA-RH7777 cells resulted in decreased incorporation of [3H]glycerol into cell-associated and secreted (VLDL-associated) 3H-triacylglcyerol (TAG) relative to control cells. Stable expression of catalytically-inactive hHL (hHLSG) also resulted in decreased secretion of VLDL-associated 3H-TAG whereas cell-associated 3H-TAG levels were unchanged. Expression of hHL or hHLSG increased cell-associated 35S-apoB100 with relatively no change in secreted 35S-apoB100. Importantly, hHL or hHLSG expression resulted in reduced 3H-TAG associated with the microsomal lumen lipid droplets (LLD), and increased relative expression of ApoB and genes involved in lipogenesis and fatty acyl oxidation. Transient expression of hHL in HL-null primary hepatocytes, mediated by adenoviral gene transfer, resulted in decreased steady-state levels of cell-associated and secreted apoA-I and reduced rates of synthesis and secretion of 35S-apoA-I. HL-null hepatocytes exhibited increased levels of secreted 35S-apoA-I relative to wildtype hepatocytes while cell-associated 35S-apoA-I levels were normal. Transient expression of a hHL chimera (hHLmt), in which the C-terminus of hHL was replaced with mouse HL sequences, exerted an inhibitory effect on apoA-I production similar to that of hHL even though hHLmt was secreted less effectively than hHL with impaired exit from the endoplasmic reticulum (ER) as compared with hHL. In contrast, stable expression of hHL in McA-RH7777 cells resulted in a dose-dependent increase in cell-associated and secreted 35S-apoA-I levels. These studies demonstrate that hHL has an intracellular (but non-catalytic) role in reducing the content of the LLD and ultimately the buoyancy of secreted VLDL particles, and that the N-terminal sequences of ER-residing hHL directly or indirectly modulates the production and secretion of apoA-I (nascent HDL) from hepatocytes.

Page generated in 0.1057 seconds