• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of Dlk overexpression on the tumorigenicity of hepatoma cells.

Wu, Chia-Ling 04 September 2004 (has links)
Dlk is a transmembrane protein that possesses six epidermal growth factor-like sequences at the extracellular domain, a single transmembrane domain and an intracellular tail. The extracellular EFG-like region of Dlk can be released by action of an unknown protease that cuts the extracellular region near the cell membrane. Dlk belongs to the EGF-like homeotic protein family and has received many names: pG2, FA-1, Pref-1, SCP-1, ZOG and Dlk. All the proteins are identical or polymorphic products of a single gene. Dlk has been involved in several differentiation processes, such as adipogenesis, hematopoiesis and neuroendocrine differentiation. Dlk is also known as the preadipocyte factor-1 (Pref-1), is highly expressed in preadipocytes but is completely abolished in adipocytes. Pref-1 may function in the maintenance of the preadipocyte state and is a negative regulator of adipocyte differentiation. Dlk is expressed in tumors with neuroendocrine features, such as human neuroblastoma, rat pheochromocytoma, and a subset of Small Cell Lung Cancer (SCLC) cell lines. The Dlk expression is probably associated with some differentiation stages because the most undifferentiated cells were lacking expression of Dlk. The finding suggests that Dlk plays an important role in differentiation and tumorigenesis of several cell types. The study was designed to examine the influence of dlk overexpression on tumorigenicity of hepatoma cells. We constructed the mammalian expression vectors for full-length dlk, dlk extracellular domain, which were transfected into SK-Hep-1 cells for generation of stable clones. The transgene expressions in selected stable clones were verified by QRT-PCR and western blot analysis. Our results indicated that overexpression of extracellular domain significantly promoted the viability of SK-Hep1 cells during serum deprivation. In SCID mice, injection of full-length dlk clones led to increased tumor growth compared with the control groups. However, the migration ability was reduced in Dlk stable clones. In summary, these results suggested full-length Dlk promoted the tumor growth but reduced the migration ability of SK-Hep1 cells.
2

INHIBITION OF CHOLESTEROL SYNTHESIS BY POLICOSANOL

Banerjee, Subhashis 01 January 2010 (has links)
Cholesterol is an essential component of the cell, but excessive blood levels are a major risk factor for the development of atherosclerotic plaques that can lead to heart disease and stroke, the foremost cause of premature death in Western societies. Policosanol, a mixture of very long chain alcohols derived from sugarcane, has gained considerable attention among the public as safe and effective means to reduce blood cholesterol levels, a belief based on some early clinical studies. My research investigates one possible mechanism by which policosanol might decrease blood cholesterol levels: the inhibition of cholesterol synthesis in the liver. Previous studies with cultured hepatoma cells have indicated that policosanol suppresses HMG-CoA reductase activity, the regulatory step in cholesterol synthesis, by activation of AMP-kinase, which then inactivates HMG-CoA reductase by phosphorylation. My studies have confirmed this activation of AMP-kinase both in hepatoma cells and in whole animals after intragastric administration of policosanol. The present studies were also undertaken to identify the upstream signaling mechanism by which policosanol activates AMP-kinase. Treatment of rat hepatoma cells with policosanol increased the amount of phosphorylated CaMKK, which can directly activate AMP-kinase, but had only a small effect on LKB1, the principal activator of AMP-kinase. Intragastric administration to mice similarly activated CaMKK, but not LKB1, in the liver. To determine if metabolism of policosanol was necessary for activation of AMP-kinase, siRNA-mediated suppression of fatty aldehyde dehydrogenase, fatty acyl CoA synthase-4, or β-ketothiolase in hepatoma cells prevented the phosphorylation of AMP-kinase and HMG-CoA reductase by policosanol, indicating that metabolism of these very long chain alcohols to fatty acids and subsequent peroxisomal β-oxidation is necessary for the suppression of cholesterol synthesis. As the principal product of fatty acid -oxidation is acetyl-CoA, further studies demonstrated that addition of acetate to cells similarly activated AMP-kinase and inactivated HMG-CoA reductase. This finding argues that the activation of AMP-kinase by policosanol results from the generation of excess acetyl-CoA via peroxisomal metabolism. Finally, although the intestine is a significant source of circulating cholesterol, policosanol was unable to activate AMP-kinase in the small intestine. These findings open new perspectives for the control of cholesterol synthesis by activators of AMP-kinase.
3

Critical Investigation of the Usability of Hepatoma Cell Lines HepG2 and Huh7 as Models for the Metabolic Representation of Resectable Hepatocellular Carcinoma

Schicht, Gerda, Seidemann, Lena, Haensel, Rene, Seehofer, Daniel, Damm, Georg 05 December 2023 (has links)
Metabolic alterations in hepatocellular carcinoma (HCC) are fundamental for the development of diagnostic screening and therapeutic intervention since energy metabolism plays a central role in differentiated hepatocytes. In HCC research, hepatoma cell lines (HCLs) like HepG2 and Huh7 cells are still the gold standard. In this study, we characterized the metabolic profiles of primary human hepatoma cells (PHCs), HCLs and primary human hepatocytes (PHHs) to determine their differentiation states. PHCs and PHHs (HCC-PHHs) were isolated from surgical specimens of HCC patients and their energy metabolism was compared to PHHs from non-HCC patients and the HepG2 and Huh7 cells at different levels (transcript, protein, function). Our analyses showed successful isolation of PHCs with a purity of 50–73% (CK18+). The transcript data revealed that changes in mRNA expression levels had already occurred in HCC-PHHs. While many genes were overexpressed in PHCs and HCC-PHHs, the changes were mostly not translated to the protein level. Downregulated metabolic key players of PHCs revealed a correlation with malign transformation and were predominantly pronounced in multilocular HCC. Therefore, HCLs failed to reflect these expression patterns of PHCs at the transcript and protein levels. The metabolic characteristics of PHCs are closer to those of HCC-PHHs than to HCLs. This should be taken into account for future optimized tumor metabolism research.

Page generated in 0.0679 seconds