• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 21
  • 15
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 323
  • 323
  • 73
  • 70
  • 37
  • 23
  • 21
  • 21
  • 19
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Transition metal complexes of X-bridged nitrogen heterocycles (X represents C=O, S=O, or O=S=O). / 羰基、亚砜及砜官能团桥联氮杂环配体的过度金属化合物的研究 / CUHK electronic theses & dissertations collection / Tang ji, ya feng ji feng guan neng tuan qiao lian dan za huan pei ti de guo du jin shu hua he wu de yan jiu

January 2008 (has links)
2-Pyridinyl-2-pyrazinylmethanone (L4) is able to exist in the neat ketone form and gem-diol form (2-C5H4N)C(OH) 2(2-C4H3N2) (L4a) in its Ag(I) and Cu(II) complexes. Two isostructural Cu(II) complexes [Cu(L4 a)2X2·2H2O, X = C lO4-, BF4-] with the L4a ligand taking the chelating mode are formed, in which the different linkage modes of lattice water molecules between the Cu(L4 a)22+ units lead to different space groups in crystallization. Through versatile anion-pi(pyrazinyl ring) and hydrogen-bonding interactions, the Cu(L4a)22+ units are assembled into distinct 3-D metal-organic hybrid frameworks in these two complexes. Different ligation modes of L4 in its neat ketone and gem-diol forms are found in its silver(I) complexes that exhibit diverse network structures. / By tuning the counter anion, mu2-bridging 2,6-pyridinediylbis(4-pyridinyl)methanone (L2) via two terminal 4-pyridyl N atoms links Ag(I) ions into two distinct structural motifs in its silver(I) complexes, namely infinite helical chain and metallacyclophane, which are further assembled into higher-dimensional metal-organic frameworks through Ag···Ag, pi···pi, hydrogen-bonding, Ag···O=C, carbonyl···carbonyl, as well as unconventional anion-pi(pyridyl ring) interactions. Intermolecular dipolar carbonyl···carbonyl interaction of three principal types serves as a common dominant non-covalent interaction in the supramolecular conglomeration of these complexes. / Di-2-pyrazinylmethanone (L3) readily undergoes metal-assisted hydration reaction in its Ag(I), Cu(II), Co(II) and Cd(II) complexes, and is potentially useful for the construction of extended coordination networks with its gem-diol (2-C4H3N2)2C(OH) 2 (L3a) or anionic (2-C4H3N 2)2C(OH)CO- (L3b) form as an architectural moiety. A sheet-like net, an alpha-polonium topology of the NaCl-type and a rare 1-D nanotubular coordination architecture has been generated in its Ag(I) complexes through the tuning of counter-anions. Three isostructural complexes Cu(L3a)2X2· nH2O (n = 4.5; X = ClO 4-, BF4-, PF 6-) have been obtained and characterized. The 3-D host frameworks of these complexes are constructed from the linkage of mononuclear Cu(L3a)22+ metallotectons through a combination of hydrogen-bonding and anion-pi interactions, leading to honeycomb-like channels that accommodate guest water molecules. A cubane-like Co(II) cluster stabilized by L3b and the topological structure of Cd(II) complexes with L3a have also been obtained. / Di-2-pyridinylmethanone (di-2-pyridyl ketone) is a well-known versatile ligand among the basic building blocks for the construction of metal-organic hybrid materials. It can exist in its neat form, or in the hydrated gem-diol and alcoholated hemiketal forms. In this thesis, through modification of the heterocyclic ring and the bridging functional group, we have systematically synthesized a series of transition metal complexes of five carbonyl-bridged heterocycles (L1-L5) (see P. xi) and two structural analogs with sulfinyl and sulfonyl bridging groups (L6-L7), which are expected to provide flexible coordination bonding and additional non-covalent interactions in the generation of metal-organic hybrid frameworks. / In the two mononuclear Cu(II) complexes of 2,6-pyridinediylbis(3-pyridinyl)methanone (L1) with the ligand taking a chelating mode, four distinct types of unconventional intermolecular C=O···pi interactions between the carbonyl and pyridyl rings were identified. Moreover, the mu2-bridging L1 via two 3-pyridyl N atoms proves to be an excellent building block for the construction of disilver(I) metallacyclophanes with a [Ag2(L1) 2]2+ skeleton in a series silver(I) complexes. The [Ag 2(L1)2]2+ metallacycle functions as a secondary building unit to form infinite chains through Ag···O=C or argentophilic interactions, which are further assembled into a 3-D supramolecular structure via collective weak interactions including the anion-pi interaction. The employment of different Cd(II) and Hg(II) salts to react with the flexible L1 ligand has resulted in infinite chain, mononuclear, and 3-D network structures, in which L1 takes eta1-terminal, N,N-chelating, and mu2- and mu3-bridging modes. In these complexes, C--H···O, C--H···Cl--M hydrogen bonding, pi···pi, carbonyl···carbonyl, O(perchlorate)···C=O, as well as unconventional anion···pi(pyridyl ring) interactions, play important roles in consolidation of the supramolecular frameworks. / Sulfinyldipyrazine (L7) is capable of forming intriguing architectures in various sivler(I) salts, including a series of coordination polymers exhibiting (4,4) net, infinite chain and 3-D framework structures. A remarkable characteristic of L7 is that the electron-deficient pyrazinyl ring and the sulfonyl group provide potential bonding sites for lone-pair-aromatic interactions in the supramolecular assemblies, such as anion-pi and S=O···pi(pyrazinyl ring) interactions. The S=O moiety of the sulfonyl group exhibits an affinity for the pyrazinyl ring, which is evidenced by the existence of two types of such interaction in the silver(I) complexes of L7. (Abstract shortened by UMI.) / by Wan, Chongqing. / Adviser: Thomas C. W. Mak. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3504. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 172-190). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
192

Synthesis and structural characterization of heterocycles incorporating a carboranyl unit.

January 2011 (has links)
He, Xiao. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 75-83). / Abstracts in English and Chinese. / Acknowledgement --- p.I / Abstract --- p.II / 摘要 --- p.III / Abbreviation --- p.IV / List of Compounds --- p.VI / List of Figures --- p.VII / Contents --- p.IX / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Transition Metal-Carboranyl Complexes --- p.2 / Chapter 1.1.1 --- Late Transition Metal-Carboranyl Complexes --- p.2 / Chapter 1.1.2 --- Early Transition Metal-Carboranyl Complexes --- p.6 / Chapter 1.2 --- Transition Metal-Carboryne Complexes --- p.12 / Chapter 1.3 --- Five-Membered Heterocycles Incorporating Main Group Elements --- p.20 / Chapter 1.3.1 --- Synthesis and Reactivity of Boroles --- p.20 / Chapter 1.3.2 --- Synthesis and Reactivity of Phospholes --- p.24 / Chapter 1.3.3 --- Synthsis and Reactivity of Silole --- p.28 / Chapter 1.4 --- Our Objectives --- p.31 / Chapter Chapter 2 --- Nickelacycles Incorporating a Carboranyl Unit --- p.32 / Chapter 2.1 --- Introduction --- p.32 / Chapter 2.2 --- "Synthesis, Characterization and Reactivity of Nickelacycles Bearing (2-CPh2O-l,2-C2B10H10)2-Ligand" --- p.32 / Chapter 2.2.1 --- Synthesis and Characterization --- p.32 / Chapter 2.2.2 --- Reactivity Study --- p.34 / Chapter 2.2.3 --- X-ray Structure --- p.36 / Chapter 2.3 --- "Synthesis and Characterization of Nickelacycles Bearing [2-C(Ph)=N-l,2-C2B10H10]2- Ligand" --- p.44 / Chapter 2.3.1 --- Synthesis and Characterization --- p.44 / Chapter 2.3.2 --- X-ray Structure --- p.45 / Chapter Chapter 3 --- Five-membered Heterocycles of Main Group Elements Incorporating a Carboranyl Unit --- p.47 / Chapter 3.1 --- Synthesis and Characterization of Heterocycles Bearing Phosphorus Element --- p.47 / Chapter 3.2 --- Synthesis and Characterization of Heterocycles Bearing Silicon Element --- p.53 / Chapter 3.3 --- Synthesis and Characterization Heterocycles Bearing Boron Element --- p.58 / Chapter Chapter 4 --- Conclusion --- p.61 / Chapter Chapter 5 --- Experimental Section --- p.63 / References --- p.75 / Appendix --- p.84 / Chapter I. --- Crystal Data and Summary of Data Collection and Refinement --- p.84 / Chapter II. --- X-ray crystallographic data in CIF (electronic form)
193

Development of small-molecule ligands for SH3 protein domains.

Inglis, Steven Robert January 2005 (has links)
Src Homology 3 (SH3) domains are small protein- protein interaction domains that bind to proline-rich peptides, mediating a range of important biological processes. Because the deregulation of events involving SH3 domains forms the basis of many human diseases, the SH3 domains are appealing targets for the development of potential therapeutics. Previously in the field, no examples of entirely small-molecule ligands for the SH3 domains have been identified. However, in our research group, we have discovered a class of heterocyclic compounds that bind to the Tec SH3 domain at conserved residues in the proline-rich peptide binding site, with weak to moderate affinity. The highest affinity of these was 2- aminoquinoline (Kd = 125 mM). In this thesis, a range of approaches are described, that were intended to contribute towards development of higher affinity small-molecule ligands for the Tec SH3 domain. Preliminary experiments, involving testing a variety of compounds structurally related to 2- aminoquinoline, provided new structure activity information, and led to a better understanding of the 2-aminoquinoline/SH3 domain binding event. The major component of this thesis is a thorough investigation into the synthesis of a range of 2- aminoquinoline derivatives. N-Substituted- 2-aminoquinolines were synthesised, however these compounds bound the SH3 domain with slightly lower affinity than 2-aminoquinoline. 6- Substituted-2-aminoquinolines were subsequently prepared, and ligands were identified with up to six-fold improved affinity relative to 2-aminoquinoline, and enhanced selectivity for the Tec SH3 domain. The techniques used for the ligand binding studies were Nuclear Magnetic Resonance (NMR) chemical shift perturbation and Fluorescence Polarisation (FP) peptide displacement assays. As part of the ligand binding studies, it was intended that the 3D tructure of a 2- aminoquinoline ligand/SH3 complex would be obtained using NMR methods, provided that a ligand was identified that bound the SH3 domain in slow exchange on the NMR timescale. However, this goal was not fulfilled. Despite this, the work presented in this thesis provides a solid foundation for the development of potent 2-aminoquinoline ligands for SH3 domains, with engineered specificity. / Thesis (Ph.D.)--School of Molecular and Biomedical Science, 2005.
194

Studies on N-Heterocyclic Compounds

Armugam, S 03 1900 (has links)
The thesis entitled "Studies on N-Hetero cyclic Compounds: (a) Reaction of 5,6,7,8-Tetrahydroisoquinolines with Vilsmeier Reagent and (b) Amide Induced in situ Alkylation of 5,6-Dihydroisoquinolines" is presented in two parts. Part I involves a study of the Vilsmeier reaction of 4-cyano-1,3-dihydroxy-5,6,7,8 tetrahydroisoquinoline derivatives, while Part II concerns the in situ alkylation of l-alkyl-4-cyano-3-methoxy-5,6- dihydroisoquinolines in presence of KNH2/liq.NH3.
195

Synthetic studies of nitrogen containing heterocycles, particularly pyrazole and benzotriazine derivatives

Nakhai, Azadeh, January 2009 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2009.
196

NMR spectroscopic and kinetic studies on secondary enamines and unstable dihydroxy derivatives of heterocyclic compounds /

Wu, Zhen-ping. January 1987 (has links)
Thesis (Ph. D.)--University of Hong Kong, 1988.
197

Luminescent cyclometalated gold (III) complexes with ancillary N-heterocyclic carbene and alkynyl ligands : from design, synthesis, photophysics to supramolecular assembly and functions

Au, Ka-man, 區嘉雯 January 2012 (has links)
A library of luminescent cyclometalated gold(III) complexes containing various bis-cyclometalating R-C^N^C ligands derived from 2,6-diphenylpyridine and ancillary alkynyl ligands, [Au(R-C^N^C)(C≡CR’)], has been synthesized. Some of the complexes have been structurally determined by X-ray crystallography. These complexes were found to exhibit intense emission in dichloromethane solution at 298 K, originating from metal-perturbed triplet intraligand (IL) excited states of the R-C^N^C ligand, with substantial charge transfer character from the aryl moiety to the pyridyl ring. In the presence of electron-rich alkynyl ligands, the emission origin could be switched to an alkynyl-to-cyclometalating ligand ligand-to-ligand charge transfer (LLCT) excited state. This class of complexes was also demonstrated to show rich electroluminescence properties as emitters in organic light-emitting devices. In addition, the supramolecular assembly of this class of complexes has also been revealed in gelation studies. N-Heterocyclic carbenes have been incorporated into the gold(III) metal center to prepare a series of luminescent mononuclear and dinuclear gold(III) complexes, [{Au(C^N^C)}n(NHC)](PF6)n and [{Au(tBuC^N^CtBu)}n(NHC)]- (PF6)n (n = 1, 2). The X-ray crystal structures of most of the complexes have been determined. The emissions of these complexes were assigned to originate from the metal-perturbed intraligand excited state of the bis-cyclometalating ligand. One of the C2-bridged dinuclear complexes was found to exhibit two distinct reduction couples, tentatively correlated to the presence of significant intramolecular π-π interaction in the complex. Two novel series of luminescent mononuclear alkynylgold(III) complexes, [Au(C^N)(C≡CR)2] (HC^N = 2-phenylpyridine (Hppy) and derivatives) and [Au(C^N^N)(C≡CR)]PF6 (HC^N^N = 6-phenyl-2,2’-bipyridine and derivatives), have been synthesized. Some of the X-ray crystal structures have been determined. The former class of complexes with bidentate C^N ligands has been observed to show tunable emission spanning across the visible spectrum from 462 to 697 nm. With the exception of [Au(ppy)(C≡C-C6H4-NH2-p)2] which showed a low-energy band originated from a 3LLCT [π(C≡C-C6H4-NH2)→π*(C^N)] excited state, all complexes exhibited vibronic-structured emission bands originated from the intraligand transition of the cyclometalating C^N ligand in dichloromethane solution at 298 K. On the other hand, most of the complexes with the tridentate C^N^N-type ligand have been observed to exhibit vibronic-structured emission bands attributed to the intraligand transition of the C^N^N ligand in low-temperature butyronitrile glass. / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
198

N-heterocyclic carbene-iron(II) complexes : chemistry and application as transfer hydrogenation catalysts.

Ikhile, Monisola Itohan. 27 November 2013 (has links)
In the last decade N-heterocyclic carbene (NHC) ligands have become important in organometallic chemistry and homogeneous catalysis, rivalling the well established phosphines. Most of the current attention to date has focused on the NHC complexes of the platinum group metals (rhodium, palladium and nickel) plus ruthenium based system, but the chemistry of NHC systems of iron which is relatively inexpensive and environmentally friendlier is considerably less developed. Thus, this project involves the design, synthesis, characterization and application in catalytic transfer hydrogenation of NHC ligands and their iron(II) complexes. The motivation for the choice of NHC as a ligand stems from the ability to systematically tune the ligand both electronically and sterically in addition to the stability and robustness of the ligand to stabilize metal centres in various environments. In this research imidazolium based NHCs are generated. Thus, three different series of imidazolium salts were synthesized and their iron(II) complexes was obtained. All the compounds were characterized by spectroscopic and crystallographic methods. These are: (a) 1,3-dialkylimidazolium salts (b) 1,3-diarylimidazolium salts and (c) ferrocenylimidazolium salts bearing methyl and phenyl spacers between the ferrocenyl and the imidazolium moieties. A total of 20 novel compounds were synthesized and are reported in this thesis. Furthermore, the application of the new compounds as transfer hydrogenation catalysts was investigated using 17 saturated and unsaturated ketones as substrates, in the presence of KOH as the base and 2-propanol as the hydrogen source. The dialkylated NHC iron(II) complexes showed excellent yields, and TON values of up to 200 were achieved under the optimized reaction conditions. Without complexation with iron, the 1,3-diarylimidazolium and ferrocenylimidazolium series of salts were also found to be active catalysts for the transfer hydrogenation reaction of ketones in alcoholic media. In the case of ferrocenylimidazolium salts a TON value up to 1880 was achieved. Notably, two of the unsaturated ketones were successfully converted at a high yield with a high selectivity to the corresponding saturated ketones only. In addition, the stability of NHC ligands to moisture was investigated, since an understanding of the stability of various deprotonated NHC-based imidazolium cations to attack by moisture resulting in hydrolysis products is very important to understanding the coordination chemistry of the ligands on to metal centres. Four novel ionic diamino aldehyde compounds were obtained by moisture attack on saturated NHC ligands. The route to the formation of the hydrolysed compounds is formulated to occur via an imidazolinium ring opening process. On the other hand the unsaturated counterparts were more stable towards hydrolysis yielding adducts with the iron(II) precursors. Finally, the electrochemical properties of the ferrocenylimidazolium salts were investigated using cyclic voltametry. By comparing the relative shifts in the formal electrode potentials of the ferrocene/ferrocenium coupled with the ferrocenylimidazolium salts, it was easy to evaluate the influence of the substituents on the carbene containing imidazolium moiety on the electrochemical properties of the iron centres. The formal electrode potential of the ferrocenylimidazolium salts shifted to higher positive potentials as compared to ferrocene, indicating a high electron withdrawing effect of the imidazolium salts. This makes the metal centres more vulnerable to attack by nucleophiles. The electrochemical studies have enabled a structure-activity correlation to be drawn for the various ferrocenylimidazolium salts. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2011.
199

AB inito studies of a pentacyclo-undecane cage lactam.

Singh, Thishana 17 October 2013 (has links)
Unable to copy abstract. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2011.
200

High resolution microwave and infrared spectroscopy of four-membered heterocyclic compounds

Chen, Ziqiu January 2011 (has links)
High resolution molecular spectroscopic techniques are useful tools to accurately probe energy differences between quantum states of molecules. These energy levels are inherently dependent on the underlying potential functions, which ultimately govern the structures and dynamics of molecules. Thus, the detailed characterization of potential energy profiles through molecular spectroscopy provides important information about molecular properties. Given the increased structural and dynamic complexity of large molecules, small compounds serve as excellent prototypes to establish quantum mechanical models that accurately characterize quantum states and ultimately potential energy functions of various molecular classes. This thesis describes the use of rotational and rovibrational spectroscopy to probe one such class: four-membered heterocycles. Rotationally-resolved vibrational spectra of four-membered rings including β-propiolactone (c-C3H4O2), 3-oxetanone (c-C3H4O2), azetidine (c-C3H6N) and silacyclobutane (c-C3H8Si) were recorded below 1200 cm-1 using a Fourier transform infrared spectrometer (FTIR) with synchrotron light at the far infrared beamline of the Canadian Light Source (CLS). Additionally, Fourier transform microwave (FTMW) spectroscopy was used to study the pure rotational spectra of β-propiolactone and silacyclobutane for the first time. This allowed the accurate characterization of the ground vibrational state and molecular structure in support of the rovibrational analysis. The far infrared vibrational modes of these four molecules were analyzed individually initially and followed by a global fit of all observed transitions of each molecule. Unique spectroscopic signatures arising from Coriolis coupling(β-propiolactone, 3-oxetanone), tunneling motions (azetidine, silacyclobutane) and the large amplitude ring puckering vibration (3-oxetanone, azetidine, silacyclobutane) were revealed and treated. The resultant Hamiltonian models used for each molecule account for the observed spectra as the spectroscopic constants are consistent across the ground state and all vibrationally excited states studied. Collectively, these studies have provided a highly effective working protocol for the treatment of high resolution rovibrational data to model the dynamic behaviour of real molecules.

Page generated in 0.086 seconds