• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 23
  • 21
  • 2
  • Tagged with
  • 80
  • 55
  • 39
  • 27
  • 22
  • 22
  • 21
  • 21
  • 21
  • 18
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis of oxygen and nitrogen heterocycles via stabilized carbocations and ring-closing metathesis

Doodeman, Robin. January 2002 (has links)
Proefschrift Universiteit van Amsterdam. / Titel abusievelijk: "Synthesis of oxygen and oitrogen heterocycles ..." Met lit. opg. - Met samenvatting in het Nederlands.
22

From nitriles to nitrogen heterocycles chemoenzymatic approaches toward diversely substituted enantiopure building blocks /

Vink, Mandy Kyung Shim. January 2003 (has links)
Proefschrift Universiteit van Amsterdam. / Met lit. opg. - Met samenvatting in het Nederlands.
23

Palladium-Katalyse Synthese und Anwendung neuartiger chiraler und achiraler N-heterocyclischer Carbene (NHC) in Palladium-katalysierten Kreuzkupplungen und Palladium-katalysierte oxidative Cyclisierung von N-Aryl-Enaminen zur Synthese hochfunktionalisierter Indole

Würtz, Sebastian January 2008 (has links)
Zugl.: Marburg, Univ., Diss., 2008
24

Verwendung molekularer Vorstufen für die Synthese neuartiger Carbide und Nitride der Elemente der IV. Hauptgruppe

Ischenko, Vladislav, January 2003 (has links)
Stuttgart, Univ., Diss., 2003.
25

000 31P-NMR-spektroskopische Untersuchungen von Heterocyclen mit a-P4S3-, -, a-P4Se3-- und P3Se4-Gerüst

Lutz, Jörg. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Osnabrück.
26

Hochsubstituierte Azabicyclo[3.3.0]octane als Peptidmimetika

Slavik, Stefan Unknown Date (has links)
Techn. Univ., Diss., 2005--Darmstadt
27

Synthese von Carbo- und Heterocyclen durch Ruthenium-katalysierte Kreuzmetathese Beiträge zur Katalysatorentwicklung /

Mix, Stefan. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2004--Berlin.
28

Design und Synthese heterocyclischer Liganden für die TAR-RNA aus HIV-1

Boden, Oliver. Unknown Date (has links)
Universiẗat, Diss., 2006--Frankfurt (Main).
29

Darstellung neuer Borheterocyclen durch Umsetzung von Borolen mit 1,3-dipolaren Reagenzien / Synthesis of new boron heterocycles by reaction of boroles with 1,3-dipolar reagents

Mailänder, Lisa January 2015 (has links) (PDF)
Darstellung neuer Borheterocyclen durch Umsetzung von Borolen mit 1,3-dipolaren Reagenzien. Bei der Usetzung von Borolen mit Aziden, Diazoalkanen und Nitronen kam es zu Ringerweiterungsreaktionen und zur Bildung von neuen Borheterocyclen (z.B. 1,2-Azaborinine, 1,2-Azaborinin-substituierte Azofarbstoffe, Boracyclohexadiene, Oxazaborocine). / Synthesis of new boron heterocycles by reaction of boroles with 1,3-dipolar reagents
30

Synthese und Reaktivität NHC-stabilisierter Diborene / Synthesis and reactivity of NHC-stabilized diborenes

Ullrich, Stefan January 2016 (has links) (PDF)
In der vorliegenden Arbeit wurde der Fokus auf die Synthese neuer Diborene mit unterschiedlichem Substitutionsmuster gerichtet. Ein Ziel bestand darin, die Gruppe der heteroaromatisch substituierten Diborene, die sich bisher aus den literaturbekannten Thienyl-substituierten Diborenen 59 und 60 zusammensetzt, um weitere Vertreter zu bereichern. In diesem Kontext konnte das Furanyl-substituierte Diboren 85 synthetisiert und charakterisiert werden (Schema 59). Die Festkörperstruktur von 85 zeigt eine koplanare Anordnung zwischen der B=B-Doppelbindung und den Furanylsubstituenten, was als Hinweis auf eine Konjugation zwischen der B=B-Doppelbindung und den Heteroaromaten gewertet werden kann und damit Parallelen zu den Thienyl-substituierten Diborenen 59 und 60 erkennen lässt. Analog dazu weist 85 drei Banden im UV-Vis-Absorptionsspektrum auf, die anhand von quantenchemischen Rechnungen den entsprechenden elektronischen Anregungen zugeordnet werden können. Demzufolge sind die HOMOs ausschließlich an der B=B-Doppelbindung und die LUMOs an den Furanylringen, sowie den NHCs lokalisiert. Cyclovoltammetrische Messungen legen zudem den Elektronenreichtum des Furanyl-substituierten Diborens 85 offen und sprechen für dessen Eignung als starkes, neutrales nichtmetallisches Oxidationsmittel. Darüber hinaus zeigen sie eine teilweise reversible Oxidation zu dem entsprechenden Monoradikalkation auf. Zur Realisierung weiterer heteroaromatisch substituierter Diborene wurden Versuche unternommen die Pyrrolylgruppe als Substituent zu etablieren, die noch elektronenreicher verglichen zu Furanyl- und Thienylgruppen ist. Die erfolgreiche Darstellung des NHC-stabilisierten Diborens 88 konnte mittels NMR-Spektroskopie verifiziert werden, jedoch gelang die weitere Charakterisierung aufgrund der extremen Empfindlichkeit von 88 nicht (Schema 59). Der Einsatz von vergleichsweise großen NHCs wie IMes zur kinetischen Stabilisierung der B=B-Doppelbindung eines Pyrrolyl-substituierten Diborens war nicht erfolgreich. Schema 59: Synthese der NHC-stabilisierten heteroaromatisch substituierten Diborene (85, 88) durch Reduktion der korrespondierenden NHC-Boran-Addukte (84, 87). In unmittelbarer Fortführung der aussichtsreichen Arbeiten von Dr. Philipp Bissinger wurde an geeigneten Syntheserouten zu den NHC-stabilisierten Diborenen 95 und 99 mit derivatisierten Thiophensubstituenten gearbeitet. Ausgehend von den BMes2- und B(FMes)2-funktionalisierten Thiophensubstituenten konnten über mehrere Reaktionssequenzen die korrespondierenden NHC-Boran-Addukte synthetisiert und charakterisiert werden. Die Reduktion dieser NHC-Boran-Addukte erzeugt intensiv gefärbte Lösungen, deren 11B-NMR-spektroskopische Untersuchungen Hinweise auf die Generierung der Diborene 95 und 99 lieferten (Schema 60). Darüber hinaus wird die erfolgreiche Darstellung des Diborens 95 durch Röntgenstrukturanalyse an Einkristallen gestützt. Schema 60: Synthese der Diborene 95 und 99 mit derivatisierten Thiophensubstituenten. Die Isolierung größerer Mengen der Diborene 95 und 99 in analytisch reiner Form gelang jedoch bislang nicht. UV-Vis Absorptionsspektroskopie, Cyclovoltammetrie und TD-DFT-Rechnungen offenbaren die drastische Einflussnahme der BMes2- bzw. der B(FMes)2-Gruppe auf die Eigenschaften der resultierenden Diborene 95 und 99. Vor allem die elektronenziehende B(FMes)2-Gruppe senkt die Grenzorbitale energetisch erheblich ab und verringert das HOMO-LUMO-gap signifikant. Die Hauptabsorptionsbande im UV-Vis-Absorptionsspektrum findet sich im nahinfraroten Bereich (NIR) und ist damit gegenüber jener des Thienyl-substituierten Diborens 59 stark bathochrom verschoben. Ziel anknüpfender Arbeiten der Gruppe um Braunschweig ist die Optimierung der Synthese der Diborene 95 und 99, sowie die weitere Charakterisierung der physikalischen Eigenschaften und die Erforschung der Reaktivitäten. Ein weiteres Ziel dieser Arbeit war die Synthese von Vinyl-substituierten Diborenen. Das NHC-Boran-Addukt 102 konnte, ausgehend von 1,1-Diphenylethen, erfolgreich dargestellt werden. Die Reduktion mit KC8 erzeugte eine intensiv gefärbte Reaktionslösung, deren 11B-NMR-spektroskopische Untersuchung eine gegenüber bekannten Diborenen leicht tieffeldverschobene Resonanz im 11B-NMR-Spektrum zeigt. Die Isolierung und zweifelsfreie Identifizierung des Reaktionsprodukts gelang aufgrund der hohen Empfindlichkeit bislang nicht. Weitere Versuche ein Diboren mit vinylogem Substitutionsmuster zu synthetisieren, in dem die alpha-Position des Vinyl-Substituenten durch eine Phenylgruppe besetzt ist, waren nicht zielführend (Schema 61). Anknüpfend an die Arbeiten von Thomas Steffenhagen, dem die Darstellung des ersten [2]Diboraferrocenophans mit Diborenbrücke 109 und dessen Identifizierung mittels NMR-Spektroskopie gelang, wurden Versuche unternommen, 109 zu kristallisieren. Dabei konnten geeignete Einkristalle zur röntgenstrukturanalytischen Charakterisierung erhalten werden und das Strukturmotiv im Festkörper bestätigt werden (Schema 62). Zentraler Gegenstand dieser Arbeit war neben der Synthese und Charakterisierung von neuen Diborenen die Untersuchung der Chemie der reaktiven B=B-Doppelbindung. Dazu wurden unter anderem Reaktivitätsstudien mit Münzmetallkomplexen durchgeführt, um die Koordinationschemie der heteroaromatisch substituierten Diborene 59 und 85, sowie des Diboren-verbrückten [2]Diboraferrocenophans 109 zu erforschen. Die Umsetzungen von 59, 85 und 109 mit CuCl führten zu den entsprechenden Münzmetall π-Diboren-Komplexen 111-113 (Schema 63). Röntgenstrukturanalytische Untersuchungen zeigen die T-förmige Geometrie der Komplexe, die aus der side-on Koordination des jeweiligen Diborens an das Metallzentrum resultiert. Das erhaltene Strukturmotiv entspricht damit dem der literaturbekannten Münzmetall-π-Diboren-Komplexe 71 und 72. Aufgrund der hohen Empfindlichkeit konnten allerdings weder die Ausbeute bestimmt noch eine detaillierte NMR-spektroskopische Charakterisierung durchgeführt werden. Das photophysikalische Potential dieser Verbindungsklasse wird dennoch in qualitativen Tests durch Bestrahlung mit UV-Licht erkennbar. Die Koordination von Kupferalkinen an die B=B-Doppelbindung der Verbindungen 59, 85 und 109 verläuft demgegenüber selektiv (Schema 63). Die ebenfalls T-förmigen Komplexe (114-116) erweisen sich als deutlich stabiler als die CuCl-Analoga und konnten demzufolge in analysenreiner Form isoliert werden. Allerdings zeigen diese in qualitativen Tests kein Lumineszenzverhalten. Eine genauere Analyse dieser Befunde erfolgte bislang nicht, ist aber aktueller Bestandteil der Forschung der Arbeitsgruppe um Braunschweig. Da die heteroaromatisch substituierten Diborene wegen ihres energetisch hoch liegenden HOMO bereitwillig zur Abgabe von Elektronen tendieren, wie in cyclovoltammetrischen Messungen gezeigt werden konnte, wurde deren potentielle Verwendung als Reduktionsmittel untersucht. Die Diborene 59, 60, 85 und 88 wurden dazu mit dem milden Oxidationsmittel (C7H7)BArf4 oxidiert und die Monoradikalkationen 117-120 mittels EPR-Spektroskopie nachgewiesen (Schema 64). Aufgrund der hohen Empfindlichkeit der Radikale (117-120) konnte keine weitere Charakterisierung erfolgen. Durch Oxidation des Diborens 85 mit Iod konnte Verbindung 121 erhalten werden (Schema 65). Die Festkörperstruktur zeigt einen dreigliedrigen Heterocyclus, bestehend aus einem positiv polarisierten Iodatom, das eine B2-Einheit verbrückt und damit die gleichwertige Beschreibung als Iodoniumion in Analogie zu den gleichnamigen Intermediaten, die bei der Addition von Halogenen an Alkene entstehen, rechtfertigt. Die Hydroborierungsreaktion ist eine bekannte Additionsreaktion von H-B-Bindungen an C=C-Doppelbindungen und konnte in dieser Arbeit erfolgreich auf die alkenanalogen Diborene übertragen werden. Die Reaktion des heteroaromatisch substituierten Diborens 85 mit Catecholboran ergibt das Triboran 122, das strukturell den klassischen Hydroborierungsprodukten von Alkenen gleicht. In Analogie dazu wird von einer syn-Addition der H-B-Bindung an die B=B-Doppelbindung des Diborens ausgegangen. Wird hingegen das Hydroborierungsreagenz Durylboran eingesetzt, so findet eine nicht-klassische Addition der H-B-Fragmente an die B=B-Doppelbindung statt. Der genaue Mechanismus, der zur Bildung des Triborans 124 führt, ist bisher nicht aufgeklärt (Schema 66). Wird das [2]Diboraferrocenophan 109, das ein cyclisches, cis-konfiguriertes Diboren als Brücke beinhaltet, mit Catecholboran bzw. Durylboran umgesetzt, so werden ebenfalls Triborane (123 und 125) generiert, die sich jedoch von den Triboranen 122 und 124 in ihrer Struktur grundlegend unterscheiden (Schema 67). Ein Erklärungsansatz hierfür könnte in der hohen Ringspannung im cyclischen Diboren-verbrückten [2]Diboraferrocenophan 109 verglichen mit dem acyclischen heteroaromatisch substituierten Diboren 85 liegen. Ein Schritt zur Bildung des Triborans 123 aus der Umsetzung von 109 mit Catecholboran findet offenbar, wie die Festkörperstruktur von 123 nahe legt, durch eine Ringerweiterung des Fünfringes des Catecholborans zu einem Sechsring durch Insertion eines Boratoms der Diborenbrücke statt. Um genauere Aussagen zur Bildung von 123 wie auch 125 treffen zu können, sind quantenchemische Studien zu diesem Thema aktuelles Arbeitsgebiet der Arbeitsgruppe um Braunschweig. Die Reaktivität der elektronenreichen B=B-Doppelbindung der heteroaromatisch substituierten Diborene wurde in der vorliegenden Arbeit gegenüber der Substanzklasse der Chalkogene überprüft. Dabei stellte sich heraus, dass die Reaktionen der Diborene 60 und 85 mit elementarem Schwefel durch reduktive Insertion von Schwefel in die B=B-Doppelbindung zur Bildung von Produktgemischen aus Trithiadiborolanen und Diborathiiranen führen. Es zeigte sich, dass die gezielte Darstellung der Trithiadiborolane 126 und 127 durch Einwirkung von Ultraschall gelingt, wohingegen das Thiadiborolan 128 selektiv durch Reaktion des Diborens 85 mit Ethylensulfid oder einem Überschuss an Triphenylphosphansulfid zugänglich gemacht werden kann (Schema 68). Die Reaktion der Diborene 60 und 85 mit elementarem Selen bzw. elementarem Tellur ergibt die entsprechenden Diboraselenirane (129 und 130) bzw. Diboratellurirane (131 und 132), die durch reduktive Insertion des entsprechenden Chalkogens in die B=B-Doppelbindung entstehen (Schema 69). Eine vollständige Spaltung der B=B-Bindung durch Insertion weiterer Äquivalente Selen bzw. Tellur ist auch unter Behandlung mit Ultraschall nicht zu beobachten. Das Furanyl-substituierte Diboren 85 konnte zudem mit chalkogenhaltigen Verbindungen erfolgreich umgesetzt werden. 85 reagiert mit Diphenyldisulfid und Diphenyldiselenid selektiv durch Addition der E-E-Bindung an die B=B Doppelbindung (Schema 70). Die diaseteroselektiven, analysenreinen 1,2-Additionsprodukte (133, 137) lassen auf einen Mechanismus, der in Analogie zu den Additionen von Disulfiden bzw. Diseleniden an Alkene über die Zwischenstufe entsprechender Sulfonium- bzw. Seleniumionen verläuft, folgern. Alternativ dazu muss eine konzertierte syn-Addition der E-E-Bindung in Erwägung gezogen werden. Demgegenüber konnten aus den Umsetzungen des Thienyl-substituierten Diborens 60 mit Diphenyldisulfid, Diphenyldiselenid und isoPropylthiol keine analysenreinen Produkte isoliert werden. Das Diboren-verbrückte [2]Diboraferrocenophan 109 reagiert mit Diphenyldisulfid in einer 1,2-Addition der S-S-Bindung an die B=B-Doppelbindung, wobei ein sp2-sp3-Diboran durch Abspaltung eines NHCs gebildet wird. Die verkürzte Fe-Bsp2-Bindungslänge lässt auf eine Stabilisierung des sp2-Boratoms durch das Fe-Zentrum schließen. In einer vergleichbaren Reaktion mit Dimethyldisulfid konnte das identische Strukturmotiv, ein sp2-sp3-Diboran, erhalten werden (Schema 71). Die Reaktion des [2]Diboraferrocenophans 109 mit Diphenyldiselenid führt zur vollständigen Spaltung der B=B-Doppelbindung unter Addition zweier Se-Se-Bindungen von zwei Äquivalenten Diphenyldiselenid und der damit einhergehenden Bildung der acyclischen bisborylierten Ferrocenspezies 139 (Schema 72). Die Bildung des einfachen Additionsprodukts, was wahrscheinlich intermediär auftritt, wurde auch bei Umsetzung mit nur einem Äquivalent Diphenyldiselenid nicht beobachtet. Die Umsetzung des Furanyl-substituierten Diborens 85 mit isoPropylthiol verläuft unter Addition der H-S-Bindung an die B=B-Doppelbindung, wobei in allen Fällen das syn-Additionsprodukt 142 erhalten wurde (Schema 72). Die von Thomas Steffenhagen beschriebene Addition der H-S-Bindung von isoPropylthiol an die B=B-Doppelbindung des [2]Diboraferrocenophans 109 ergibt dagegen selektiv ein anti-Additionsprodukt. In einer vergleichbaren Reaktion des [2]Diboraferrocenophans 109 mit tert-Butylthiol wurden anhand von NMR-Spektroskopie Indizien für die Bildung eines 1,2-Additionsproduktes erhalten. Allerdings gelang die Isolierung eines analysenreinen Produktes bislang nicht. / Initially the focus of this work was the synthesis and characterization of novel diborenes bearing a variety of boron substituents. Of particular interest was the introduction of new heterocyclic functionalized diborenes synthesized in a manner akin to two literature-known thienyl functionalized diborenes (59 and 60). Through these studies, the synthesis and charaterization of the furanyl-functionalized diborene 85 has been achieved (scheme 1). The solid-state structure of 85 displays coplanarity between the respective B2 unit and the furanyl rings, indicating some degree of pi-conjugation between the heterocyclic substituents and the central B2 unit. This structural feature closely parallels the thienyl-functionalized diborenes, which also exhibit coplanarity between the central B2 unit and the peripheral heterocycles as well. Similar to 59 and 60, the furanyl-functionalized diborene 85 reveals three absorption bands in the UV-vis spectrum. According to TD-DFT calculations the excitations can be assigned to transitions between the frontier orbitals. The HOMOs are exclusively located at the central B=B double bond, whereas the LUMOs are predominantly delocalized over the furanyl substituents and the NHCs. Cyclovoltammetry measurements prove that the diborene 85 is extraordinarily electron rich, which is in accordance with previous data taken from the characterization of the thienyl-substituted diborenes (59, 60). Therefore the heterocyclic-functionalized diborenes can be considered strong electron donors. Respectively, these species rank among the class of strong, neutral non-metallic reducing agents. Moreover the partial reversible reduction wave suggests the formation of a stable monoradical cation, which was also observed in similar cyclovoltametry measurements of the related diborenes 59 and 60. A synthetic approach to establish a pyrrolyl-functionalized diborene was also investigated. The successful synthesis of the IMe-stabilized diborene 88 was verified by NMR spectroscopy (scheme 1). Further charaterization of 88 failed because of the instability of the compound in both the solid state and in solution. The application of a more sterically demanding NHC (IMes) led only to the respective NHC-borane adduct 89, which could not be reductively coupled to the desired diborene. In a continuation of the promising work of Dr. Philipp Bissinger, the search for a reliable synthesis route to the heterocyclic-substituted diborenes 95 and 99 was examined (scheme 2). These species consisted of thiophene-derived heterocyclics substituted with BMes2 and B(FMes)2 groups, respectively. Starting from the BMes2- and B(FMes)2-functionalized thiophene precursors, the synthesis of the respective NHC-borane adducts was first accomplished over several reaction steps. The reduction of these adducts produced intensely colored solutions of the respective diborenes 95 and 99 as confirmed by 11B NMR spectroscopic investigations. The diborene 95 was structurally confirmed by X-ray diffraction studies of suitable crystals, however, isolation of the pure compounds (95, 99) in larger amounts for detailed NMR spectroscopic studies could not be achieved. Investigations via UV-vis spectroscopy, cyclovoltammetry and TD-DFT-calculations revealed the significant influence of the BMes2 and the B(FMes)2 groups on the chemical and photophysical properties of both diborenes 95 and 99. The strong electron withdrawing B(FMes)2 group was found to lower the energy of the LUMO, subsequently decreasing the HOMO-LUMO energetic gap dramatically. The main absorption band in the UV-vis spectrum of 99 is detected in the near infrared (NIR) range, bathochromically shifted in comparison to the parent thienyl-substituted diborene 59. A following prospective study in the Braunschweig group could be the optimization of the synthesis of these diborenes, accompanied by the characterization and exploration of their reactivity patterns. Another part of this thesis dealt with the synthesis of diborenes bearing vinyl-group functionalized boron precursors. Based on the 1,1-diphenylethene starting material, the corresponding NHC-borane adduct was generated through several sequential reactions. Reduction with KC8 afforded an intensely colored reaction mixture that upon filtration had a 11B NMR resonance slightly downfield shifted with respect to the literature-known diborenes. However, isolation of the product and its identification were unsuccessful. Further attempts to prepare a diborene bearing a vinyl substituent with a phenyl group in the alpha-position were attempted but were ultimately unrewarding (scheme 3). Extending the work of Thomas Steffenhagen on the synthesis of the first diborene-bridged [2]diboraferrocenophane 109, experiments aimed at crystallizing 109 were successfully performed. Single crystal X-ray diffraction experiments confirmed the highly strained structure [2]diboraferrocenophane 109 bearing a cis-configured bridging diborene (scheme 4). Besides the synthesis and characterization of new diborenes, exploration of the chemistry of the reactive B=B double bond was also a major interest in this thesis. Therefore diborene reactivity studies with coinage metal complexes were carried out in order to evaluate the ability of the heterocyclic-substituted species 59, 85 and the diborene-bridged [2]diboraferrocenophane (109) to interact with these metal species. The reactions of 59, 85 and 109 with CuCl led to the formation of the corresponding copper complexes 111-113 (scheme 5). Single X-ray crystallographic analysis of 111 and 112 revealed a T-shaped geometry for these complexes. This geometry results through side-on coordination of the diborene to the metal center. The structural motif is equivalent to those of literature known diborene CuCl pi-complexes. Due to their instability, further characterization of the complexes 111-113 could not be achieved. In addition, the potential of the diborene CuCl pi-complexes was realized qualitatively via irradiation with UV light, indicating strong luminescence. The coordination of copper alkyne complexes at the B=B double bond of 59, 85 and 109 proceeded selectively and resulted in the formation of T-shaped complexes 114-116, which are structurally similar to the CuCl complexes 111 and 112 (scheme 5). Remarkably, 114 and 116 display enhanced stability compared with the CuCl complexes 111 and 112 and could be characterized via NMR spectroscopy. However contrary to the CuCl complexes, the diborene Cu alkynyl  complexes 114-116 showed no signs of luminescence while under UV irradiation. A concurrent detailled study of these findings is underway in the Braunschweig group. Owing to their energetically high-lying HOMOs, diborenes can easily be oxidized as shown in CV measurements. Therefore their application as reducing agent was explored in this thesis. The diborenes were utilized in redox reactions with (C7H7)BArf4 to yield the monoradical cations 117-120 (scheme 6). These species could be subsequently be verified by EPR spectroscopic measurements. Due to the instability of the radical species 117-120, further characterization could not be accomplished. Upon oxidation with elemental iodine (I2), the diborene 85 could be succcessfully converted to the dicationic species 121. This species can be considered an iodonium ion analogous to the compounds generated in reactions of alkenes with iodine (scheme 7). The solid state structure shows a three-membered heterocyclic ring in which the positively charged iodine atom symmetrically bridges the two boron atoms. The diborene species were tested for hydroboration reactivity in a manner analogous to the well-known hydroboration reaction between borane B-H bonds and C=C double bonds. This work utilized the B=B double bonds of diborenes to serve as alkene mimics. The reaction of the furanyl-substituted diborene 85 with catecholborane afforded the triborane 122. This product is presumably formed via syn-addition of the borane B-H bond to the diborene B=B double bond. Treatment of the same diborene 85 with durylborane led to the formation of a non-classical species in contrast to known alkene hydroboration reactivity. As can be seen in Scheme 8, the species formed seemingly arises upon cleavage of a B-Cfuryl bond (scheme 8). The detailled mechanism for this reaction has thus far not been elucidated. In reactions of 109 with catecholborane or durylborane, the triboranes 123 and 125 were generated, respectively (scheme 9). The structural motifs of both species show the ring expansion of the diboraferrocenophane that likely occurs through the insertion of the BDur and BCat fragments into the diborene B=B double bond. Additionally, in the case of the reaction with catecholborane, one boron atom must insert into the B-O bond to yield compound 123. The reaction patterns between the heterocycle-substitued diborene 85 and the [2]diboraferocenophane 109 towards hydroboration reagents have been shown to differ dramatically. One reason for this divergent reactivity could be the tendency of the diborene-bridged [2]diboraferrocenophane 109 to alleviate some of its ring strain. To gain further knowledge into this reactivity, theoretical studies are currently underway in the Braunschweig group. The electron rich B=B double bond of diborenes was further exploited in reactivity studies with elemental chalcogen reagents as well as chalcogen-containing reagents. The reaction products of the heterocycle-substituted diborenes 60 and 85 with elemental sulfur proved to be dependent upon the reaction conditions. Reactions performed at room temperature were observed to generate a mixture of diborathiiranes and trithiadiborolanes, whereas the selective formation of the trithiadiborolanes (126, 127) has been accomplished by ultrasonification of the reaction mixture. The trithiadiborolanes 126 and 127 are formed by the reductive insertion of three sulfur atoms into the B=B double bond while the partial insertion of one sulfur atom affords the diborathiirane 128. Further reactivity studies were conducted with triphenylphosphine sulfide and ethylene sulfide reagents in order to probe the application of sulfur-atom-donor compounds. These test reactions yielded successful transfer of the sulfur atom to the B=B double bonds of the diborene 85 (scheme 10). The reactions of diborenes 60 and 85 with elemental selenium or tellurium exclusively afforded the heterocyclic three-membered diboraseleniranes 129 and 130 and diboratelluriranes 131 and 132, respectively (scheme 11). The formation of similar five-membered heterocyclic compounds relative to the trithiadiborolanes was not observed under ultrasonification of the reaction mixtures. Besides the reactions with elemental chalcogens, the heterocyclic-substituted diborene 85 was succesfully reacted with diorganyldichalcogens (diphenyl disulfide and diphenyl diselenide), whereby 1,2-addition of the E-E single bond of the dichalcogens to the B=B double bond was observed (scheme 12). In contrast, the reaction of the thienyl-substituted diborene with diphenyl diselenide led to the formation of the desired compound 138, however isolation of the pure product was not successful. The structural motifs of 133 and 137 are indicative of either a syn-addition mechanism or a thiol-ene Michael-addition-type mechanism. A radical mechanism can be ruled out, since only one stereoisomer was generated through these studies. In order to validate these proposed mechanisms, ongoing theoretical studies are being performed by the Braunschweig group. The reaction of diborene-bridged [2]diboraferrocenophane 109 with diphenyl disulfide resulted in the formation of a sp2-sp3 diborane through cleavage of one B-CNHC bond. The short Fe-Bsp2 distance indicates some interaction between the Fe core and the Bsp2 atom. In a similar reaction the [2]diboraferrocenophane 109 formed an identical sp2-sp3 diborane when reacted with dimethyl disulfide (scheme 13). The B=B double bond of [2]diboraferrocenophane 109 was completely cleaved upon addition of two equivalents of diphenyl diselenide, yielding compound 139 (scheme 14). The simple 1,2-addition product of one Se-Se bond to the B=B double bond could not be detected or isolated as an intermediate, even if only one equivalent of diphenyl dislenide was applied. The reactions of the heterocycle-substituted diborenes 85 and 60 with isopropyl mercaptan result in addition of one H-S bond to the B=B double bonds to yield the syn-addition products 142 and 143 (scheme 14). In constrast, the anti-addition product 110 of the reaction of [2]diboraferrocenophane 109 with isopropyl mercaptan has been recently isolated by Thomas Steffenhagen. The reaction of 109 with a tert-butyl-mercaptan was also attempted. NMR spectroscopic investigations indicated the successful formation of the 1,2-addition product. Since attempts to crystallize 144 did not succeed, the structure of 144 could not be confirmed.

Page generated in 0.0867 seconds