• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fixed nitrogen dynamics and heterocyst patterning in filamentous heterocystous cyanobacteria

Brown, Aidan I 10 August 2012 (has links)
Cyanobacteria are prokaryotes that can grow photoautotrophically using oxygenic photosynthesis. Some filamentous cyanobacteria in media with insufficient fixed nitrogen develop a regular pattern of heterocyst cells that fix nitrogen for the remaining vegetative cells. We have built an integrated computational model of fixed nitrogen transport and cell growth for filamentous cyanobacteria. With our model, two qualitatively different experimentally observed nitrogen distributions between a pair of heterocysts are reconciled. By adding dynamic heterocyst placement into our model, we can optimize heterocyst frequency with respect to growth. Further introduction of modest leakage leads to distinct growth rates between different heterocyst placement strategies. A local placement strategy yields maximal growth and steady state heterocyst spacings similar to those observed experimentally. Adding more realistic fixed nitrogen storage based heterocyst commitment together with lateral inhibition to the model allows us to address initial heterocyst commitment and qualitatively reproduces many aspects of heterocyst differentiation. We also investigate patterns of starving cells and correlations of fixed nitrogen in filaments without heterocysts. We find percolation transitions in both spatial one dimensional patterns and space-time two dimensional patterns.
2

Regulation of the Nitrogen Fixation Genes in the Heterocystous Cyanobacterium Anabaena sp. Strain PCC 7120

Kumar, Krithika 2011 December 1900 (has links)
Many multicellular cyanobacteria produce specialized nitrogenfixing heterocysts. During diazotrophic growth of Anabaena (Nostoc) sp. strain PCC 7120, a regulated developmental pattern of single heterocysts separated by about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst structure and metabolic activity function together to accommodate oxygensensitive nitrogen fixation, catalyzed by nitrogenase. In this work, we show that the promoter of the nifHDK genes that encode nitrogenase, lies upstream from the intergenic region between nifH and nifU. Excision of the fdxN element is required for transcription of the nifHDK genes. Fluorescence microscopy of reporter strain PnifHDgfp, in the chromosomal nif locus indicated that expression of nifHDK is blocked in mutants that are unable to excise the fdxN element after nitrogen deprivation. We proposed that a promoter upstream of the element, likely PnifB, is required for transcription of the nifHDK genes. Indeed, the PnifHDgfp reporter at an ectopic site did not show GFP fluorescence. A PnifBgfp reporter was expressed specifically in heterocysts indicating that a promoter for the nifB gene lies in the intergenic region upstream of nifB. A stem loop structure located in the intergenic region between nifH and nifU may act as a processing site for production of nifHDK transcripts. We also provide evidence that DevH, a transcriptional regulator, is involved in regulating the nifBfdxNnifSUHDK genes. DevH is a protein belonging to the cAMP receptor protein (CRP) family of proteins that are widespread in bacteria and regulate genes in response to a gamut of physiological conditions. We show that DevH binds specifically to the nifB upstream region but not to the immediate upstream region of nifH. We predict that DevH binds to an NtcAlike binding site upstream of nifB and functions as an activator of the nifBfdxNnifSUHDK genes. Finally, we show that sigE, which is expressed at 16 hours after nitrogen deprivation, is required for normal expression of some heterocyst specific genes, including nifHDK. A sigE mutant shows delayed and reduced expression of nifHDK and some middle and late genes. We hypothesize that DevH in concert with SigE upregulates the expression of nifHDK in heterocysts after nitrogen deprivation.
3

HETEROCYSTOUS N2-FIXING CYANOBACTERIA: MODELING OF CULTURE PROFILES, EFFECT OF RED LIGHT, AND CELL FLOCCULATION STUDY

Pinzon-Gamez, Neissa M. 18 May 2006 (has links)
No description available.
4

External Growth Control of Baltic Sea Cyanobacteria

Zakrisson, Anna January 2015 (has links)
The overall aim of the study was to provide better insights to the ecological role and impact of cyanobacteria in Baltic Sea (BS) bay, coastal and open sea areas. Biomass and heterocyst development of diazotrophic, heterocystous cyanobacteria were monitored over several years simultaneously as physical parameters such as nutrients and temperature. Nitrogen fixation was estimated as well as its transfer in the BS food web. Even after decades of debate there is still controversy whether eutrophication of lakes and estuaries/coastal areas should be managed by reducing phosphorus only or also nitrogen. Central to this debate is whether nitrogen fixation by cyanobacteria can replace shortages of combined nitrogen quickly enough to make phosphorus the limiting nutrient and nitrogen removal pointless or even harmful. Also, it is not clear if available combined nitrogen inhibits heterocystous cyanobacterial nitrogen fixation and if it is used for their growth in situ. A large ecosystem-wide experiment started in Himmerfjärden bay in year 1997, where the N-loadings and release depth from a modern sewage treatment plant (STP), located in the inner part of the bay, were modulated. The STP creates a steep gradient of nutrients and stable nitrogen isotopes, which can be used to study uptake of combined nitrogen, as well as biomass development and primary productivity. A 35-year long data series was used to achieve good insights into phytoplankton development and primary productivity in the Baltic Sea over the last couple of decades. These in vivo long time series, based on monitoring data, in combination with shorter series (2-3 seasons, including measurements of colony stoichiometry and stable isotopes), have resulted in a unique meta-dataset, allowing for high-resolution observations into the role of the cyanobacteria in the Baltic Sea ecosystem. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
5

External Growth Control of Baltic Sea Cyanobacteria

Zakrisson, Anna January 2013 (has links)
In the Himmerfjärden Bay a large excess of nitrogen over phosphorus in the discharge from a large sewage treatment plant (STP) has suppressed growth of diazotrophic cyanobacteria in its inner parts. Implementation of nitrogen removal in the STP in 1997 drastically reduced nitrogen load and triggered growth of diazotrophs, mainly Aphanizomenon sp. This study is part of a long-term series of experiments with the overall aim to test how algal biomass and production in a receiving area can be reduced, without stimulating nitrogen fixation and biomass growth by diazotrophic cyanobacteria. Nitrogen removal was discontinued in the STP during two years (2007-8) and resumed in 2009, and the discharge shifted from 25 to 10 m depth, above the seasonal pycnocline. Cellular 15N showed that N2 was the most important N source for diazotrophic cyanobacteria, and that uptake of combined nitrogen was insignificant. As biomass was declining and at the end of the productive season, we could detect a small, but significant, increase in cellular δ15N at the inner bay stations (H3 and H4). However, this coincided with an increased proportion of Anabaena spp. of the total diazotrophic biomass. This may indicate that Anabaena spp. has a higher uptake of combined nitrogen compared with Aphanizomenon sp. or that declining populations of Aphanizomenon sp. take up combined nitrogen. We also found no evidence of uptake of combined nitrogen during the winter months when nitrogen supply is ample and Aphanizomenon sp. is devoid of heterocysts. During the first half of summer (week 21-27) heterocyst frequencies were higher at the outer stations B1 and H2, compared to the inner bay stations (H4 and H5). The lower frequencies at the inner bay stations are likely due to the reduced growth rate suffered by the Aphanizomenon sp. due to stronger competition for phosphorus by non-diazotrophs at these stations and hence lower need for heterocysts. Towards the end of summer conditions even out along the bay, as the surplus phosphorus from the spring bloom is used up at the outer stations and no heterocyst gradient is present. Heterocyst frequency varied significantly over the summer, with minimum values in the beginning of July, coinciding with the highest water temperatures, and higher frequencies in early and late summer. We suggest this is primarily due to a more efficiently functioning nitrogenase enzyme at high temperatures with a reduced need for “expensive” heterocysts. Spring heterocyst differentiation occurred around 4-6 weeks after depletion of dissolved inorganic nitrogen (DIN) and only when water temperature was 5-9 oC and a pycnocline established. It seems that temperature and light in concert will initiate growth, leading to an internal nitrogen deficiency which starts heterocyst differentiation. / Himmerfjärden eutrophication study

Page generated in 0.0694 seconds