• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Context Interchange as a Scalable Solution to Interoperating Amongst Heterogeneous Dynamic Services

Zhu, Hongwei, Madnick, Stuart E. 01 1900 (has links)
Many online services access a large number of autonomous data sources and at the same time need to meet different user requirements. It is essential for these services to achieve semantic interoperability among these information exchange entities. In the presence of an increasing number of proprietary business processes, heterogeneous data standards, and diverse user requirements, it is critical that the services are implemented using adaptable, extensible, and scalable technology. The COntext INterchange (COIN) approach, inspired by similar goals of the Semantic Web, provides a robust solution. In this paper, we describe how COIN can be used to implement dynamic online services where semantic differences are reconciled on the fly. We show that COIN is flexible and scalable by comparing it with several conventional approaches. With a given ontology, the number of conversions in COIN is quadratic to the semantic aspect that has the largest number of distinctions. These semantic aspects are modeled as modifiers in a conceptual ontology; in most cases the number of conversions is linear with the number of modifiers, which is significantly smaller than traditional hard-wiring middleware approach where the number of conversion programs is quadratic to the number of sources and data receivers. In the example scenario in the paper, the COIN approach needs only 5 conversions to be defined while traditional approaches require 20,000 to 100 million. COIN achieves this scalability by automatically composing all the comprehensive conversions from a small number of declaratively defined sub-conversions. / Singapore-MIT Alliance (SMA)
2

Top-k Entity Augmentation using Consistent Set Covering

Eberius, Julian, Thiele, Maik, Braunschweig, Katrin, Lehner, Wolfgang 19 September 2022 (has links)
Entity augmentation is a query type in which, given a set of entities and a large corpus of possible data sources, the values of a missing attribute are to be retrieved. State of the art methods return a single result that, to cover all queried entities, is fused from a potentially large set of data sources. We argue that queries on large corpora of heterogeneous sources using information retrieval and automatic schema matching methods can not easily return a single result that the user can trust, especially if the result is composed from a large number of sources that user has to verify manually. We therefore propose to process these queries in a Top-k fashion, in which the system produces multiple minimal consistent solutions from which the user can choose to resolve the uncertainty of the data sources and methods used. In this paper, we introduce and formalize the problem of consistent, multi-solution set covering, and present algorithms based on a greedy and a genetic optimization approach. We then apply these algorithms to Web table-based entity augmentation. The publication further includes a Web table corpus with 100M tables, and a Web table retrieval and matching system in which these algorithms are implemented. Our experiments show that the consistency and minimality of the augmentation results can be improved using our set covering approach, without loss of precision or coverage and while producing multiple alternative query results.

Page generated in 0.0944 seconds