Spelling suggestions: "subject:"heteroscedásticos"" "subject:"heteroscedastic""
1 |
Acurácia de previsões para vazão em redes: um comparativo entre ARIMA, GARCH e RNADuarte, Felipe Machado 29 August 2014 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-03-31T15:28:38Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Felipe Machado Duarte.pdf: 1439236 bytes, checksum: 970d1a4b49da9d4541eb167aa39a82fa (MD5) / Made available in DSpace on 2016-03-31T15:28:39Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Felipe Machado Duarte.pdf: 1439236 bytes, checksum: 970d1a4b49da9d4541eb167aa39a82fa (MD5)
Previous issue date: 2014-08-29 / Em consequência da evolução da internet, causada por mudanças de paradigma como a Internet das coisas, por exemplo, surgem novas demandas tecnológicas por conta do crescimento do número de dispositivos conectados. Um dos novos desafios que vieram junto a esta demanda é gerenciar esta rede em expansão, de maneira a garantir conectividade aos dispositivos que a integram. Um dos aspectos que merecem atenção no gerenciamento da rede é o provisionamento da largura de banda, que deve ser realizado de maneira a evitar o desperdício de banda, sem por outro lado comprometer a conectividade ao restringi-la demais. No entanto, balancear esta equação não é uma tarefa simples, pois o tráfego de dados na rede é bastante complexo e exibe componentes, como a volatilidade, que tornam difícil a sua modelagem. Já há algum tempo, estudos são publicados apresentando a utilização de ferramentas de análise de séries temporais para prever a vazão de dados em redes de computadores, e entre as técnicas aplicadas com mais sucesso estão os modelos ARMA, GARCH e RNA. Embora estas técnicas tenham sido discutidas como alternativa para modelar dados de tráfego de redes, pouco material está disponível sobre a comparação de suas acurácias, de maneira que neste estudo foi proposta uma avaliação das acurácias dos modelos ARIMA, GARCH e RNA. Esta avaliação foi realizada em cenários configurados em diferentes granularidades de tempo e para múltiplos horizontes de previsão. Para cada um destes cenários foram ajustados modelos ARIMA, GARCH e RNA, e a validação das métricas de acurácia das previsões obtidas se deu através do Rolling Forecast Horizon. Os resultados obtidos mostraram que a RNA exibiu melhor acurácia em grande parte dos cenários propostos, chegando a exibir RMSE até 32% menor que as previsões geradas pelos modelos ARIMA e GARCH. No entanto, na presença de alta volatilidade, o GARCH conseguiu apresentar as previsões com melhor desempenho, exibindo RMSE até 29% menores que os outros modelos estudados. Os resultados deste trabalho servem de auxílio para a área de gerenciamento de redes, em especial a tarefa de provisionamento de largura de banda de tráfego, pois trazem mais informações sobre os desempenhos dos modelos ARIMA, GARCH e RNA ao gerar previsões para este tipo de tráfego. / The Internet evolution, caused by paradigm changes as the Internet of Things, fosters technological advances to cope with the rising number of connected devices. One of the new challenges that appeared with this new reality is the management of such expanding networks, assuring connectivity to every device within them. One of the major aspects of network management is bandwidth provisioning, which must be performed in a way to avoid bandwidth wasting, but without compromising connectivity by restricting it too much. Balancing such an equation is not a simple task, as network data traffic is very complex and presents property features, such as volatility, that turns its modeling rather difficult. It has been some time since research is published with the use of temporal analysis tools to predict data throughput in computer networks, among them, the most successful techniques employ the ARMA, GARCH and ANN models. Although these approaches have been discussed as alternatives do network data traffic modeling, there is little literature available concerning their accuracy, which motivated this work to perform an accuracy evaluation of the ARIMA, GARCH and ANN models. This evaluation was conducted in scenarios configured with different time granularities and for multiple forecast horizons. For each scenario, ARIMA, GARCH and ANN models were set, and the accuracy metrics evaluation was performed with a Rolling Forecast Horizon. Results show that ANN yielded better accuracy in most proposed scenarios, having a RMSE up to 32% lower than the forecasts generated by the ARIMA and GARCH models. However, when there is a high volatility, GARCH provided better forecasts, with a RMSE up to 29% lower than its counterparts. The results from this work provide a useful assistance to network management, especially to bandwidth provisioning, by shedding light on the accuracy presented by the ARIMA, GARCH and ANN models when generating forecasts for this type of traffic.
|
Page generated in 0.0794 seconds