• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uncertainty-aware deep learning for prediction of remaining useful life of mechanical systems

Cornelius, Samuel J 10 December 2021 (has links)
Remaining useful life (RUL) prediction is a problem that researchers in the prognostics and health management (PHM) community have been studying for decades. Both physics-based and data-driven methods have been investigated, and in recent years, deep learning has gained significant attention. When sufficiently large and diverse datasets are available, deep neural networks can achieve state-of-the-art performance in RUL prediction for a variety of systems. However, for end users to trust the results of these models, especially as they are integrated into safety-critical systems, RUL prediction uncertainty must be captured. This work explores an approach for estimating both epistemic and heteroscedastic aleatoric uncertainties that emerge in RUL prediction deep neural networks and demonstrates that quantifying the overall impact of these uncertainties on predictions reveal valuable insight into model performance. Additionally, a study is carried out to observe the effects of RUL truth data augmentation on perceived uncertainties in the model.

Page generated in 0.0999 seconds