• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Learning by Failing to Explain

Hall, Robert Joseph 01 May 1986 (has links)
Explanation-based Generalization requires that the learner obtain an explanation of why a precedent exemplifies a concept. It is, therefore, useless if the system fails to find this explanation. However, it is not necessary to give up and resort to purely empirical generalization methods. In fact, the system may already know almost everything it needs to explain the precedent. Learning by Failing to Explain is a method which is able to exploit current knowledge to prune complex precedents, isolating the mysterious parts of the precedent. The idea has two parts: the notion of partially analyzing a precedent to get rid of the parts which are already explainable, and the notion of re-analyzing old rules in terms of new ones, so that more general rules are obtained.

Page generated in 0.0894 seconds