1 |
The Impact of a Microturbine Power Plant on an Off Road Range Extended Electric VehicleZetts, Andrew Wyatt 31 March 2015 (has links)
The purpose of this thesis is to examine the feasibility of using a microturbine to power an off-road Series Hybrid Autonomous Vehicle (SHEV), and evaluate the benefits and drawbacks inherent in using a microturbine rather than an Internal Combustion Engine (ICE). The specific power plant requirements for a low speed hybrid vehicle that must operate extensively as an Electric Vehicle (EV) and run on JP-8 (a diesel equivalent) are unusual; few options can adequately address all of these needs. Most development of Hybrid Electric Vehicles (HEVs) has focused on gasoline ICE power plants, but Diesel ICEs are heavier, which has an adverse effect on EV range.
While mechanically-linked turbine vehicles failed to have the same performance abilities of their ICE counterparts, a microturbine generator-powered SHEV can take advantage of its battery pack to avoid the issues inherent in its mechanical predecessors. A microturbine generator is mechanically decoupled from the powertrain, allowing for an incredibly power dense power plant that lightens the weight of the vehicle. This weight reduction directly correlates to an increased EV operational range, enhancing mobility, stealth, and the tactical effectiveness of the squad that the vehicle is intended to support.
To determine the full impact that a microturbine might have on this specific SHEV, modeling of the vehicle was conducted to directly compare a microturbine and an ICE power plant using two drive cycles that were designed to simulate the typical operation specific to the vehicle. Drive cycle analysis revealed that the improved EV performance and design flexibility offered by the microturbine's weight justifies the selection of a microturbine over an ICE for this specific case. This decision is dependent upon several factors: a microturbine with fuel efficiency comparable to an ICE, the selection of a large battery pack, and an emphasis on EV operations. / Master of Science
|
2 |
Design Optimization Of A Parallel Hybrid Powertrain Using Derivative-Free AlgorithmsPorandla, Sachin Kumar 10 December 2005 (has links)
A Hybrid Electric Vehicle (HEV) is a complex electro-mechanical-chemical system that involves two or more energy sources. The inherent advantages of HEVs are their increased fuel economy, reduced harmful emissions and better vehicle performance. The extent of improvement in fuel economy and vehicle performance greatly depends on selecting optimal component sizes. The complex interaction between the various components makes it difficult to size specific components manually or analytically. So, simulation-based multi-variable design optimization is a possible solution for such kind of system level design problems. The multi-modal, noisy and discontinuous nature of the Hybrid Vehicle design requires the use of derivativeree global algorithms because the derivative-based local algorithms work poorly with such design problems. In this thesis, a Hybrid Vehicle is optimized using various Global Algorithms ? DIviding RECTangles (DIRECT), Simulated Annealing (SA), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). The objective of this study is to increase the overall fuel economy on a composite of city and highway driving cycle and to improve the vehicle performance. The performance of each algorithm is compared on a six variable hybrid electric vehicle design problem. Powertrain System Analysis Tool (PSAT), a state-of-the-art powertrain simulator, developed in MATLAB/Simulink environment by Argonne National Laboratory is used as the vehicle simulator. Further, a Hybrid algorithm that is a combination of global and local algorithm is developed to improve the convergence of the global algorithms. The hybrid algorithm is tested on two simple mathematical functions to check its efficiency.
|
3 |
Hepatitis E virus seroprevalence in CanadaWeger, Steven 02 February 2017 (has links)
Hepatitis E virus (HEV) is the main cause of acute viral hepatitis worldwide, predominantly in developing areas where it is endemic. Recently, HEV has gained more attention in the developed world, prompting several industrialized countries to assess seroprevalence rates using blood donor samples. The seroprevalence among Canadian blood donor samples collected from July 2013 - December 2015 was 5.84% (240/4,107). None of the 14,053 samples tested were positive for HEV RNA. There was no significant increase in the high-risk groups we tested. HIV was determined to be a significant risk-factor for HEV infection in a retrospective study of Kenya-based sex-worker cohorts, but not so in a Canadian cohort of HIV-positive intravenous drug users. Overall, HEV seroprevalence in Canada is lower than that published in other countries. This together with failing to detect HEV RNA in Canadian blood donations indicates that HEV currently poses low risk to the Canadian blood supply. / February 2017
|
4 |
Mechanism of Pathogenesis and Replication of an Avian Strain of the Hepatitis E Virus in a Chicken ModelBillam, Padma 02 May 2007 (has links)
Hepatitis E is an acute, enterically transmitted disease of public health importance. The mechanism of pathogenesis of HEV is poorly understood due to the lack of an in vitro cell culture system and an ideal animal model system. With the discovery of avian HEV and its association with a hepatic disease (Hepatitis-Splenomegaly syndrome), chickens provide an excellent small homologous animal model system to study this important virus. The objectives of this dissertation were to utilize chickens as a model system to study the pathogenesis and replication of avian HEV under the natural route of infection, to identify potential extrahepatic replication sites, to determine and analyze the complete genomic sequence of the avirulent strain of avian HEV, and to study the compartive pathogenesis of the two isolates of avian HEV, the prototype pathogenic and avirulent strains of avian HEV.
We attempted to experimentally infect specific-pathogen-free (SPF) adult chickens by the natural fecal-oral route in order to systematically study HEV pathogenesis and replication and to characterize the clinical course and pathological lesions associated with avian HEV infection. Sixty-week-old, specific-pathogen-free (SPF) chickens were inoculated with 5 x104.5 50% chicken infectious dose of avian HEV by oronasal route and IV route. All oronasally- and IV- inoculated chickens had seroconverted to avian HEV antibodies and fecal virus shedding was detected variably from 1 to 20 DPI in the IV group, and from 10 to 56 DPI in the oronasal group. Avian HEV RNA was detected in serum, bile, and liver samples earlier during the course of infection in IV-inoculated chickens than in oronasally-inoculated ones. Gross liver lesions including subcapsular hemorrhages and enlargement of right intermediate lobe and microscopic hepatic lesions in the liver characterized by lymphocytic periphlebitis and phlebitis were observed in inoculated chickens. This is the first report of experimental HEV infection via its natural route in a homologous animal model system.
Very little is known about HEV pathogenesis and it has been hypothesized that HEV replicates in tissues other than liver. The replicating negative-strand viral RNA was detected by negative-strand-specific RT-PCR in liver, serum, colon, cecum, jejunum, ileum, duodenum and cecal tonsils,but not in other non-GIT tissues. Immunohistochemistry using an avian HEV capsid protein-specific anti-peptide antibody revealed positive signal in liver and GIT tissues including colon, jejunum, ileum, cecum, cecal tonsils and pancreas. The detection of avian HEV capsid antigen and replicative negative-strand viral RNA in the GIT tissues indicates that HEV replicates in the GI tract following infection by fecal-oral route.
The complete genomic sequence of an avirulent strain of avian HEV was determined using primer walking strategy. The full-length genome of the avirulent strain is 6649 nts in length and has a nucleotide sequence identity of 90.1% with the prototype pathogenic strain. Numerous non-silent mutations were observed in ORF1, the region coding for the nonstructural proteins. Six unique non-silent mutations were identified in the capsid-encoding ORF2 region and the ORF3 had four non-silent mutations. Phylogenetic analysis based on full-length genomic sequence revealed that the avirulent strain is clustered together with the pathogenic avian HEV and represents a branch distinct from mammalian HEVs.
In order to study the comparative pathogenesis between the pathogenic and avirulent strains of avian HEV, an infectious stock of the avirulent avian HEV was generated and infectivity titer was determined to be 5 x 102.5 CID50 per ml by experimentally infecting young SPF chickens. Six-week-old SPF chickens were inoculated with one of two strains of avian hepatitis E viruses, pathogenic avian HEV recovered from a chicken with HS syndrome and avirulent avian HEV isolated from a healthy chicken to study comparative pathogenesis. Most of the chickens seroconverted by 3 wpi in both pathogenic avian HEV and avirulent avian HEV groups. Avian HEV RNA was detected in feces and serum of the chickens from both the inoculated group from 1 wpi. Microscopic liver lesions included lymphocytic periphlebitis and phlebitis the overall hepatic lesion mean score was higher for the pathogenic avian HEV group compared to the avirulent avian HEV and control groups, suggestive of attenuation
In summary, SPF chickens were experimentally infected with avian HEV by natural route to study the systematic pathogenesis and replication. Non-liver replication sites of avian HEV were also identified in a chicken model. The complete genomic sequence of an apparently avirulent strain of avian hepatitis E virus was determined and the comparative pathogenesis of avian hepatitis E virus isolates from a chicken with HS syndrome and from a healthy chicken was also studied by experimental infections in young SPF chickens. The results from this dissertation research have important implications for the understanding of HEV pathogenesis. / Ph. D.
|
5 |
Molecular Characterization of Animal Strains of Hepatitis E Virus (HEV): Avian HEV and Swine HEVHuang, Fang-Fang 15 December 2004 (has links)
Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important public health concern in many developing countries. It mainly infects young adults and has a mortality of up to 25% in pregnant women. Although hepatitis E is only sporadic in industrialized countries including the United States, a relative high seroprevalence rate has been reported in healthy individuals. Evidence suggests that there exist animal reservoirs for HEV and HEV transmission is zoonotic. Animal strains of HEV, swine HEV and avian HEV have been identified from a pig and a chicken, respectively, in the United States. Studies showed that swine HEV and avian HEV are genetically and antigenically related to human HEV, and that pigs and chickens are useful animal models to study HEV replication, pathogenesis and cross-species infection. The objectives of this dissertation were to genetically characterize both avian HEV and swine HEV, to determine their serological and molecular epidemiology in the United States, to assess the ability of avian HEV cross-species infection in non-human primates, to determine the full-length genomic sequence and genome organization, and to construct an infectious cDNA clone of avian HEV.
The prevalence of swine HEV infections in US swine herds and the heterogeneity of swine HEV isolates from different geographic regions of the United States were determined. We found that 35% pigs and 54% swine herds were positive for swine HEV RNA. Partial capsid gene region of twenty-seven US swine HEV isolates was sequenced and was showed to share 88%-100% nucleotide sequence identity to each other and 89-98% identity with the prototype US swine HEV, but only <79% identity with Taiwanese swine HEV isolates and most known human strains of HEV worldwide. All US swine HEV isolates belong to the same genotype 3 with the prototype US swine HEV and the two US strains of human HEV.
Similarly, the prevalence of avian HEV infections in US chicken flocks and the heterogeneity of avian HEV isolates were also determined. Helicase gene region of eleven field isolates of avian HEV from chickens with hepatitis-splenomegaly (HS) syndrome was sequenced and was found to share 78-100% nucleotide sequence identities with each other, 79-88% identities with the prototype avian HEV, 76-80% identities with Australian chicken big liver and spleen disease virus (BLSV), and 56-61% identities with other known strains of mammalian HEV. A relative high prevalence of anti-avian HEV antibodies was found in apparently healthy chicken flocks in 5 states. Like swine HEV, the seropositivity of avian HEV in adult chickens was higher than that in young chickens.
To genetically characterize the avian HEV genome, we determined the full-length genomic sequence of avian HEV, which is 6,654 bp in length excluding the poly (A) tail, and 600 bp shorter than that of mammalian HEVs. Avian HEV has similar genomic organization with human and swine HEVs, but shared only about 50% nucleotide sequence identity with mammalian HEVs in the complete genome. Significant genetic variations such as deletions and insertions, particularly in the ORF1 of avian HEV, were observed, but motifs in the putative functional domains of the ORF1 were relatively conserved between avian HEV and mammalian HEVs. Phylogenetic analyses based on the full-length genomic sequence revealed that avian HEV represents a branch distinct from human and swine HEVs.
Since swine HEV infects non-human primates and possibly humans, the ability of avian HEV cross-species infection in non-human primates was also assessed. However, unlike swine HEV, avian HEV failed to infect two rhesus monkeys under experimental conditions.
With the availability of the complete genome sequence of avian HEV, we constructed three full-length cDNA clones of avian HEV and tested their infectivity by in vitro transfection of the LMH chicken liver cells and by in vivo intrahepatic inoculation of specific-pathogen-free (SPF) chickens. The results showed that all 3 cDNA clones of avian HEV were infectious both in vitro and in vivo, as the capped RNA transcripts from each of the clones were replication-competent in transfected LMH cells and developed active infection in inoculated SPF chickens.
In summary, avian HEV and swine HEV infections are enzootic in chicken flocks and in swine herds in the United States, respectively. Like human HEV, swine HEV and avian HEV isolates from different geographic regions are also genetically heterogenic. Complete genomic sequence analyses showed that avian HEV is related to, but distinct from, human and swine HEVs. Unlike swine HEV, avian HEV is probably not transmissible to non-human primates. Infectious cDNA clones of avian HEV have been successfully constructed. The availability of the infectious clones for a chicken strain of HEV now affords us an opportunity to study the mechanisms of HEV replication, pathogenesis and cross-species infection. / Ph. D.
|
6 |
Model Predictive Control for Series-Parallel Plug-In Hybrid Electrical VehicleEngman, Jimmy January 2011 (has links)
The automotive industry is required to deal with increasingly stringent legislationfor greenhouse gases. Hybrid Electric Vehicles, HEV, are gaining acceptance as thefuture path of lower emissions and fuel consumption. The increased complexityof multiple prime movers demand more advanced control systems, where futuredriving conditions also becomes interesting. For a plug-in Hybrid Electric Vehicle,PIHEV, it is important to utilize the comparatively inexpensive electric energybefore the driving cycle is complete, this for minimize the cost of the driving cycle,since the battery in a PIHEV can be charged from the grid. A strategy with lengthinformation of the driving cycle from a global positioning system, GPS, couldreduce the cost of driving. This by starting to blend the electric energy with fuelearlier, a strategy called blended driving accomplish this by distribute the electricenergy, that is charged externally, with fuel over the driving cycle, and also ensurethat the battery’s minimum level reaches before the driving cycle is finished. Astrategy called Charge Depleting Charge Sustaining, CDCS, does not need lengthinformation. This strategy first depletes the battery to a minimum State of Charge,SOC, and after this engages the engine to maintain the SOC at this level. In thisthesis, a variable SOC reference is developed, which is dependent on knowledgeabout the cycle’s length and the current length the vehicle has driven in the cycle.With assistance of a variable SOC reference, is a blended strategy realized. Thisis used to minimize the cost of a driving cycle. A comparison between the blendedstrategy and the CDCS strategy was done, where the CDCS strategy uses a fixedSOC reference. During simulation is the usage of fuel minimized; and the blendedstrategy decreases the cost of the driving missions compared to the CDCS strategy.To solve the energy management problem is a model predictive control used. Thedesigned control system follows the driving cycles, is charge sustaining and solvesthe energy management problem during simulation. The system also handlesmoderate model errors. / Fordonsindustrin måste hantera allt strängare lagkrav mot utsläpp av emissioneroch växthusgaser. Hybridfordon har börjat betraktas som den framtida vägenför att ytterligare minska utsläpp och användning av fossila bränslen. Den ökadekomplexiteten från flera olika motorer kräver mera avancerade styrsystem. Begränsningarfrån motorernas energikällor gör att framtida förhållanden är viktigaatt estimera. För plug-in hybridfordon, PIHEV, är det viktigt att använda denvvijämförelsevis billiga elektriska energin innan fordonet har nått fram till slutdestinationen.Batteriets nuvarande energimängd mäts i dess State of Charge, SOC.Genom att utnyttja information om hur långt det är till slutdestinationen från ettGlobal Positioning System, GPS, blandar styrsystemet den elektriska energin medbränsle från början, detta kallas för blandad körning. En strategi som inte hartillgång till hur långt fordonet ska köras kallas Charge Depleting Charge Sustaining,CDCS. Denna strategi använder först energin från batteriet, för att sedanbörja använda förbränningsmotorn när SOC:s miniminivå har nåtts. Strategin attanvända GPS informationen är jämförd med en strategi som inte har tillgång tillinformation om körcykelns längd. Blandad körning använder en variabel SOC referens,till skillnad från CDCS strategin som använder sig av en konstant referenspå SOC:s miniminivå. Den variabla SOC referensen beror på hur långt fordonethar kört av den totala körsträckan, med hjälp av denna realiseras en blandad körning.Från simuleringarna visade det sig att blandad körning gav minskad kostnadför de simulerade körcyklerna jämfört med en CDCS strategi. En modellbaseradprediktionsreglering används för att lösa energifördelningsproblemet. Styrsystemetföljer körcykler och löser energifördelningsproblemet för de olika drivkällorna undersimuleringarna. Styrsystemet hanterar även måttliga modellfel.
|
7 |
The Effect of Social Stress and Vitamin C on Immunity and Response to Hemorrhagic Enteritis Virus in TurkeysMeade, Sharonda Madrica 30 December 2004 (has links)
Hemorrhagic Enteritis (HE) vaccine is perhaps the most commonly used vaccine in the turkey industry. Although it provides protection against clinical disease, the vaccine is still thought to produce transient immunosuppression. In the field, HE still remains a significant concern for turkey producers.
Research conducted over the years has shown that management stressors such as movement of turkeys from brooding to finishing environments and the timing of these stressors may influence the short-term response to vaccination. Strategic stress application may be of benefit in the optimization of protective responses and the development of vaccination protocols without detrimental effects on performance. Ascorbic acid may also have important implications on social stress and may play a role in immunity and response to HE vaccination in turkeys.
Trials were conducted to examine the interrelationship among social stress, nutrition (vitamin C), immunity and their influence on response to hemorrhagic enteritis virus (HEV) vaccination.
Stress is unavoidable, however if it is managed properly, it can be beneficial. In this dissertation, it was first demonstrated that stress in the form of social disruption can have negative physiological and immunological effects on turkey poults and that these effects can be alleviated with the addition of 300mg/kg vitamin C to the diet. Secondly, it was also demonstrated that when stress is applied on the day of vaccination, response to HEV vaccination can be improved. Thirdly, vitamin C supplementation at 300mg/kg can improve responses to HEV vaccination. However, it was concluded that vitamin C supplementation during periods of simultaneous stress application and vaccination does not provide benefit to response to vaccination. / Ph. D.
|
8 |
Development and refinement of a hybrid electric vehicle simulator and its application in “design space exploration”Li, Qingyuan January 1998 (has links)
No description available.
|
9 |
Hierarchical-Energy Management Strategy for Range Extended Electric Delivery TruckShiledar, Ankur January 2021 (has links)
No description available.
|
10 |
Foodborne Transmission and Molecular Mechanism of Cross-species Infection of Hepatitis E Virus (HEV)Feagins, Alicia R. 09 December 2010 (has links)
Hepatitis E virus (HEV), the causative agent of hepatitis E, is an emerging virus of global distribution. At least four distinct genotypes of HEV exist worldwide: genotype 1 and 2 HEV strains are responsible for waterborne epidemics; genotype 3 and 4 HEV strains are responsible for sporadic occurrences of acute hepatitis E. Genotype 3 and 4 HEVs are zoonotic and have a more expanded host range than genotypes 1 and 2 which are restricted to humans. Genotype 3 and 4 HEV isolates obtained from animal tissues are genetically very similar, or identical in some cases, to human HEV recovered from hepatitis E patients. The objectives of this dissertation research were to assess the zoonotic foodborne transmission of HEV and elucidate the viral determinants of HEV host range. To determine the risk of HEV foodborne transmission, 127 packages of commercial pig liver were tested for HEV RNA. Eleven percent of them were positive for HEV RNA and the contaminating virus remained infectious. We also demonstrated that medium-to-rare cooking condition (56°C) does not completely inactivate HEV, although frying and boiling of the contaminated livers inactivated the virus. To reduce the risk of foodborne HEV transmission, commercial pig livers must be thoroughly cooked for consumption. To determine the host range of genotype 4 HEVs, pigs were inoculated with a genotype 4 human HEV. All pigs developed an active HEV infection indicating that genotype 4 human HEVs can cross species barriers and infect pigs. To identify viral determinant(s) of species tropism, ORF2 alone or in combination with its adjacent 5′ junction region (JR) and 3′ non-coding region (NCR), were swapped between genotypes 1 and 4, 3 and 4, and 1 and 3 to produce 5 chimeric viruses. Chimeric viruses containing ORF2 or JR+ORF2+3' NCR from genotype 4 human HEV in the backbone of genotype 3 swine HEV were viable in vitro and infectious in vivo. Chimeric viruses containing the JR+ORF2+3'NCR of genotypes 3 or 4 HEV in the backbone of genotype 1 human HEV were viable in vitro but non-infectious in pigs, suggesting that ORF1 may also be important for host range. / Ph. D.
|
Page generated in 0.0627 seconds