1 |
Admission control and radio resource allocation for multicasting over high altitude platformsIbrahim, Ahmed 15 August 2016 (has links)
In this thesis, optimization techniques for a joint admission control and radio resource allocation are developed for multicasting over high altitude platforms. First, a primary system model in a multicellular high altitude platform system is considered, in which each user can receive any requested multicast session in its cell from no more than only one HAP antenna simultaneously. All the users have equal priority for admission. The users are selected to join the respective multicast groups and the power, subchannels and time slots are allocated such that the spectrum utilization is maximized while satisfying the quality of service requirements. Lagrangian relaxation and the subgradient algorithm are used to obtain solution bounds for the primary system model problem formulation. These bounds were then used in the branch and bound algorithm for pruning of nodes. The numerical results illustrate the goodness of the bounds for different constraint set dualizations and for different subgradient step size rules.
The system model is then extended to allow the multicast group users to receive a session's transmission from more than one antenna simultaneously at different frequencies. This also allows the user to receive multicast sessions transmitted in neighboring cells too, not just those transmitted in the cell which the user resides in. The users have different priority levels of admission and the objective is to maximize the admission of highest priority users to the system. A much efficient formulation is obtained for the extended model in terms of size, as compared to the primary model. Linear outer approximation using McCormick underestimators are used for the relaxation of the mixed binary quadratically constrained problem. The solution method is based on branch and cut scheme in which cutting planes, domain propagation and heuristics are integrated. Various branching schemes are considered and a presolving reformulation linearization scheme for a specific set of quadratic constraints is considered. The numerical experiments compare the performances in terms of the duality gap, number of nodes, number of iterations, the number of iterations per node, the time needed to obtain the first feasible solution and the percentage of instances a feasible solution was found. / October 2016
|
2 |
Coexistence, Deployment and Business Models of Heterogeneous Wireless Systems Incorporating High Altitude PlatformsYang, Zhe January 2013 (has links)
The increased demand for broadband communications has led to the rapid development of the conventional terrestrial and satellite wireless communications systems. One of the main challenges to next generation wireless systems is to deliver high-capacity and cost-efficient solutions to cope with an increasing usage of broadband services and applications. In the recent years, an emerging competitive system has attracted the attention for providing wireless broadband communications and other services based on quasi-stationary aerial platforms operating in the stratosphere known by high altitude platforms (HAPs), and located 17-22 km above the earth surface. This solution has been described by the International Telecommunication Union (ITU) as "a new and long anticipated technology that can revolutionize the telecommunication industry''. The HAP systems provide important advantages such as low cost, high elevation angles, low propagation delay, easy and incremental deployment, flexibility in operation, broad coverage, broadcast and broadband capability, ability to move around in emergency situations, etc. Therefore, they have been proposed by ITU for the provision of fixed, mobile services and applications, e.g. the third generation (3G) services licensed by ITU and backbone link for terrestrial networks in remote areas. This thesis explores and investigates the wireless communication and techno-economic performance of terrestrial systems and HAPs. An overview of research and development on aerial platforms worldwide is given. Coexistence performance and techniques of heterogeneous systems to provide broadband wireless communications based on Worldwide Interoperability Microwave Access (WiMAX) are investigated. A heterogeneous scenario is developed to examine the coexistence performance of heterogeneous systems. The capacity and deployment aspects of HAPs are analyzed, and further compared with terrestrial Universal Mobile Telecommunications Systems (UMTS) through techno-economic studies including a proposed partnership based business model for HAPs. Performance of wireless sensor network applications via HAPs is also investigated, and shows the high potential of HAPs for large-area and long-endurance surveillance and emergency applications. The thesis shows that communications from the aerial platforms provide the best features of both terrestrial and satellite systems. HAPs can effectively coexist in a heterogeneous radio environment, and are competitive solutions in urban and suburban scenarios in terms of capacity, coverage and business perspective. This makes HAP a viable competitor and complement to conventional terrestrial infrastructures and satellite systems.
|
3 |
The Modeling, Simulation, and Operational Control of Aerospace Communication NetworksBarritt, Brian James 29 August 2017 (has links)
No description available.
|
Page generated in 0.0629 seconds