• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Precipitate Phases in Several High Temperature Shape Memory Alloys

Yang, Fan 19 December 2012 (has links)
No description available.
2

Strengthening of metastable beta titanium alloys

Bennett, Joe Mancha January 2018 (has links)
Using current technology, it is now possible to probe material at atomic length scales, increasing our fundamental understanding of material behavior and properties. Metastable β titanium alloys are a subset of titanium alloys with huge potential for the aerospace sector. However, they exhibit atomic transformations which, even after 60 years of research, are still disputed. For example, these alloys are strengthened using the ω phase, but the mechanism by which this phase forms and its stability are still in question. The aim of this PhD project was to investigate the strengthening of metastable Ti-15wt.%Mo by understanding the stability and transformation pathways which make the metastable β titanium alloy class unique. Athermal ω shares the same composition as the β matrix and is formed by rapid cooling from the β phase field. The classical theory of athermal ω formation is based upon a diffusion-less mechanism in which consecutive pairs of {111}β planes collapse together. However, latest high-resolution electron microscope observations have suggested chemical alterations occur as well, which give reason to challenge this classical formation mechanism. Two novel methods were explored to determine the nature of the ω phase: 1) electron imaging of thin material at different collection angles and 2) total X-ray scattering analysis of large volumes of material. Complementary techniques are invaluable since thin foil artefacts were identified. In particular, a new B2 structured phase in the Ti-15wt.%Mo alloy was observed only in thin electron transparent material. Experimental data from the two new methods were compared to simulations. It was found that a frozen phonon description of the ω structure provided a best fit in both scenarios. The results are therefore consistent with the classical theory of ω formation but the collapse of the {111}β planes towards the ω phase is not considered complete.
3

Quantitative analysis of core-shell nanoparticle catalysts by scanning transmission electron microscopy

Haibo, E. January 2013 (has links)
This thesis concerns the application of aberration corrected scanning transmission electron microscopy (STEM) to the quantitative analysis of industrial Pd-Pt core-shell catalyst nanoparticles. High angle annular dark field imaging (HAADF), an incoherent imaging mode, is used to determine particle size distribution and particle morphology of various particle designs with differing amounts of Pt coverage. The limitations to imaging, discrete tomography and spectral analysis imposed by the sample’s sensitivity to the beam are also explored. Since scattered intensity in HAADF is strongly dependent on both thickness and composition, determining the three dimensional structure of a particle and its bimetallic composition in each atomic column requires further analysis. A quantitative method was developed to interpret single images, obtained from commercially available microscopes, by analysis of the cross sections of HAADF scattering from individual atomic columns. This technique uses thorough detector calibrations and full dynamical simulations in order to allow comparison between experimentally measured cross section to simulated ones and is shown to be robust to many experimental parameters. Potential difficulties in its applications are discussed. The cross section approach is tested on model materials before applying it to the identification of column compositions of core-shell nanoparticles. Energy dispersive X-ray analysis is then used to provide compositional sensitivity. The potential sources of error are discussed and steps towards optimisation of experimental parameters presented. Finally, a combination of HAADF cross section analysis and EDX spectrum imaging is used to investigate the core-shell nanoparticles and the results are correlated to findings regarding structure and catalyst activity from other techniques. The results show that analysis by cross section combined with EDX spectrum mapping shows great promise in elucidating the atom-by-atom composition of individual columns in a core-shell nanoparticle. However, there is a clear need for further investigation to solve the thickness / composition dualism.
4

Atomic Structure of Domain and Interphase Boundaries in Ferroelectric HfO₂

Grimley, Everett D., Schenk, Tony, Mikolajick, Thomas, Schroeder, Uwe, LeBeau, James M. 26 August 2022 (has links)
Though ferroelectric HfO₂ thin films are now well characterized, little is currently known about their grain substructure. In particular, the formation of domain and phase boundaries requires investigation to better understand phase stabilization, switching, and phase interconversion. Here, scanning transmission electron microscopy is applied to investigate the atomic structure of boundaries in these materials. It is found that orthorhombic/orthorhombic domain walls and coherent orthorhombic/monoclinic interphase boundaries form throughout individual grains. The results inform how interphase boundaries can impose strain conditions that may be key to phase stabilization. Moreover, the atomic structure near interphase boundary walls suggests potential for their mobility under bias, which has been speculated to occur in perovskite morphotropic phase boundary systems by mechanisms similar to domain boundary motion.

Page generated in 0.077 seconds