• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Planet Formation Imager (PFI): science vision and key requirements

Kraus, Stefan, Monnier, John D., Ireland, Michael J., Duchêne, Gaspard, Espaillat, Catherine, Hönig, Sebastian, Juhasz, Attila, Mordasini, Chris, Olofsson, Johan, Paladini, Claudia, Stassun, Keivan, Turner, Neal, Vasisht, Gautam, Harries, Tim J., Bate, Matthew R., Gonzalez, Jean-François, Matter, Alexis, Zhu, Zhaohuan, Panic, Olja, Regaly, Zsolt, Morbidelli, Alessandro, Meru, Farzana, Wolf, Sebastian, Ilee, John, Berger, Jean-Philippe, Zhao, Ming, Kral, Quentin, Morlok, Andreas, Bonsor, Amy, Ciardi, David, Kane, Stephen R., Kratter, Kaitlin, Laughlin, Greg, Pepper, Joshua, Raymond, Sean, Labadie, Lucas, Nelson, Richard P., Weigelt, Gerd, ten Brummelaar, Theo, Pierens, Arnaud, Oudmaijer, Rene, Kley, Wilhelm, Pope, Benjamin, Jensen, Eric L. N., Bayo, Amelia, Smith, Michael, Boyajian, Tabetha, Quiroga-Nuñez, Luis Henry, Millan-Gabet, Rafael, Chiavassa, Andrea, Gallenne, Alexandre, Reynolds, Mark, de Wit, Willem-Jan, Wittkowski, Markus, Millour, Florentin, Gandhi, Poshak, Ramos Almeida, Cristina, Alonso Herrero, Almudena, Packham, Chris, Kishimoto, Makoto, Tristram, Konrad R. W., Pott, Jörg-Uwe, Surdej, Jean, Buscher, David, Haniff, Chris, Lacour, Sylvestre, Petrov, Romain, Ridgway, Steve, Tuthill, Peter, van Belle, Gerard, Armitage, Phil, Baruteau, Clement, Benisty, Myriam, Bitsch, Bertram, Paardekooper, Sijme-Jan, Pinte, Christophe, Masset, Frederic, Rosotti, Giovanni 04 August 2016 (has links)
The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to similar to 100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.

Page generated in 0.1224 seconds