• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface Passivation of Crystalline Silicon by Dual Layer Amorphous Silicon Films

Stepanov, Dmitri 25 August 2011 (has links)
The probability of recombination of photogenerated electron hole pairs in crystalline silicon is governed by the density of surface defect states and the density of charge carriers. Depositions of intrinsic hydrogenated amorphous silicon (a-Si:H) in dc saddle field (DCSF) PECVD system and hydrogenated amorphous silicon nitride (SiNx) in rf PECVD system forms a dual layer stack on c-Si, which results in an excellent passivation of the surface and an anti-reflection coating. Response Surface Methodology is used in this work to optimize the deposition conditions of SiNx. Optimization of the response surface function yielded deposition conditions that materialized in a surface recombination velocity of less than 4cm/s. The BACH (Back Amorphous Crystalline silicon Heterojunction) cell concept makes use of this dual layer a-Si:H/SiNx stack to form a high efficiency photovoltaic device. The high quality passivating structure can result in the BACH solar cell device with more than 20% conversion efficiency.
2

Surface Passivation of Crystalline Silicon by Dual Layer Amorphous Silicon Films

Stepanov, Dmitri 25 August 2011 (has links)
The probability of recombination of photogenerated electron hole pairs in crystalline silicon is governed by the density of surface defect states and the density of charge carriers. Depositions of intrinsic hydrogenated amorphous silicon (a-Si:H) in dc saddle field (DCSF) PECVD system and hydrogenated amorphous silicon nitride (SiNx) in rf PECVD system forms a dual layer stack on c-Si, which results in an excellent passivation of the surface and an anti-reflection coating. Response Surface Methodology is used in this work to optimize the deposition conditions of SiNx. Optimization of the response surface function yielded deposition conditions that materialized in a surface recombination velocity of less than 4cm/s. The BACH (Back Amorphous Crystalline silicon Heterojunction) cell concept makes use of this dual layer a-Si:H/SiNx stack to form a high efficiency photovoltaic device. The high quality passivating structure can result in the BACH solar cell device with more than 20% conversion efficiency.

Page generated in 0.0915 seconds