• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

1,2,4-Triazine Based Energetic Materials and Improved Synthesis of Nitro-compounds

Shannon E Creegan (12476763) 29 April 2022 (has links)
<p> The following document is a compilation of four manuscripts which were peer-reviewed and accepted for publication in the following scientific journals: <em>Propellants, Explosives, Pyrotechniques</em>, <em>Crystal Growth & Design</em>, <em>Zeitschrift für Anorganische und Allgemeine Chemie ZAAC</em>, and <em>Energetic Materials Frontiers</em>. This work, also, includes excerpts from the author’s review of energetic materials synthesized via reactions with nitroacetonitrile published by <em>RSC Advances</em>. The research presented is the result of a four-year graduate program in the School of Materials Engineering and as part of the Purdue Energetics Research Center (PERC). </p> <p>  </p> <p><em>1,2,4-Triazine Based Energetic Materials and Improved Nitro-Compound Synthesis</em> briefly addresses the history of energetic materials, key requirements, and ways to modify materials to meet those requirements before transitioning to the research synthesis and characterization. The discussion sections address the synthesis methods of the heterocyclic 1,2,4-triazine structure and alternative routes for the formation of nitro moieties. Also discussed are the methods for chemical characterization, thermal stability, mechanical sensitivity, and the theoretical calculations used to obtain energetic performances for comparison with traditional known explosive materials.</p> <p><br></p>
2

<b>The Electrochemical Synthesis of High Nitrogen and Energetic Materials</b>

Joseph Robert Yount (19132255) 15 July 2024 (has links)
<p dir="ltr">Developing high-nitrogen materials is highly important to industries, such as pharmaceuticals and energetic materials development. The production of such materials is often wrought with hazardous conditions that raise manufacturing costs and produce toxic waste streams. This is often observed using heavy-metal redox reagents such as potassium permanganate, lead acetate, zinc, and silver metal. Elucidating novel synthesis techniques to alleviate these issues is highly important for reducing environmental toxicity and lowering reaction costs. One green technique that has gained popularity in the past few decades is synthetic organic electrochemistry. Electrochemistry is a technique that utilizes the direct flow of electrons to drive chemical reactions. This is advantageous as the direct use of electrons supplied from an electrode is an inherently cheap and environmentally friendly redox reagent. Additionally, electrochemistry allows for unique reaction pathways that would be difficult, if not impossible, to obtain via traditional chemical methodologies.</p><p dir="ltr">Herein, I discuss our work on advancing electrochemical synthesis for synthesizing high-nitrogen and energetic materials, which includes: An overview of potential reaction pathways toward developing promising high-nitrogen heterocyclic small molecules and polymers. Studies of the reaction efficiency of the decagram scale electrochemical production of useful energetic feedstocks, such as potassium dinitroethane. Novel azo bridged energetic materials produced via electrochemical amine oxidation reactions that were further utilized to prepare a series of energetic <i>N</i>-nitramines. Finally, a novel sequential electrochemical-photochemical methodology has been developed that has produced annulated heterocycles with promising pharmaceutical and energetic applications.</p>
3

CHARACTERIZATION OF INKJET PRINTED HIGH NITROGEN ENERGETIC MATERIALS AND BILAYER NANOTHERMITE

Adarsh Patra (6897383) 15 August 2019 (has links)
<p>This thesis presents work on two major areas of research. The first area of research involves the use of a dual-nozzle piezoelectric inkjet printing system to print bilayer aluminum bismuth (III) oxide nanothermite samples. The combinatorial printing method allows for separate fuel and oxidizer inks to be printed adjacent to each other at prescribed offset distances. The effect of the bilayer thickness on the burning rate of the samples is investigated using high-speed imaging. Analysis of the burning rate data revealed that there is no statistically significant relationship between these two parameters. This result was used to determine the dominant processes that control the propagation rate in nanothermite systems. It was concluded that convective processes dominate the burning rate rather than diffusive processes. The second area of research involved synthesizing inks suitable for inkjet printing using two promising high nitrogen energetic materials called BTATz and DAATO<sub>3.5</sub>. The performance of the developed inks was characterized using four experiments. The thermal stability and exothermic behavior of the inks were determined using DSC and TGA analysis. The results revealed that the inks are more thermally stable than the base materials. The inks were used to print lines that were subsequently used to determine burning rates. DAATO<sub>3.5</sub> samples were determined to have faster burning rates than BTATz. Closed pressure bomb experiments were conducted to determine the gas producing capability of the high nitrogen inks. BTATz samples showed better performance in terms of peak static pressures and pressurization rates. 3D printed microthrusters were developed to test the thrust performance of the inks. Peak thrust, total impulse, and specific impulse values are reported and were determined to be suitable for use with Class 1 micro-spacecraft. Finally, a microthruster array prototype was developed to demonstrate the capability to use additive manufacturing to create high packing density arrays.</p>
4

Estudo do desgaste erosivo-corrosivo de aços inoxidáveis de alto nitrogênio em meio lamacento. / Erosion-corrosion wear of high nitrogen stainless steels in a slurry.

López Ochoa, Diana Maria 23 November 2007 (has links)
Os processos de erosão-corrosão são comumente encontrados em tubulações, válvulas e outros componentes usados na indústria química, petroquímica e na exploração de minérios. Quando a corrosão e a erosão atuam conjuntamente, os mecanismos de dano são complexos e em geral as perdas de massa associadas com esta combinação de processos são maiores do que a soma das perdas geradas pela erosão ou a corrosão atuando separadamente. Os aços inoxidáveis são materiais amplamente usados neste tipo de indústrias. A série martensítica é usada quando se necessita de boas propriedades mecânicas e moderada resistência à corrosão, enquanto que a austenítica é usada para condições onde é necessária uma boa resistência à corrosão, ainda que as propriedades mecânicas deste tipo de aço não sejam muito altas. Adições de nitrogênio aos aços inoxidáveis melhoram tanto a resistência à corrosão quanto a resistência mecânica, no entanto, poucos trabalhos têm sido desenvolvidos sobre o sinergismo erosão-corrosão dos aços inoxidáveis de alto nitrogênio. Neste trabalho, estuda-se o efeito da adição de nitrogênio, em solução sólida, na resistência à erosão-corrosão de um aço inoxidável martensítico AISI 410 e um austenítico AISI 304L em lama composta por 3,5% de NaCl e partículas de quartzo. Para tanto foram nitretadas, em alta temperatura, amostras destes aços sob diferentes pressões. Foram obtidas amostras martensíticas com 0,2 e 0,4% de nitrogênio e austeníticas com 0,25 e 0,55% de nitrogênio em solução sólida. Amostras sem nitrogênio foram usadas como material de referência. Foram desenvolvidos dois tipos de ensaios em dispositivo tipo jato: medidas de perda de massa e de polarização potenciodinâmica. A topografia das superfícies testadas foi observada usando microscopia óptica e eletrônica de varredura. Essa informação, conjuntamente com os resultados de perda de massa e dos ensaios eletroquímicos, foi usada para estabelecer os mecanismos de degradação dos materiais estudados, nas diferentes condições de ensaio, e os efeitos da introdução de nitrogênio na estrutura dos aços. Dos resultados obtidos neste trabalho, observa-se que as curvas de polarização potenciodinâmica são sensíveis às variações nas condições de ensaio, como a presença de fluxo e a introdução de partículas. Em geral, o potencial de corrosão e de pite diminuíram e a densidade de corrente passiva aumentou com o aumento da agressividade do ensaio, deslocando as curvas para potenciais menos nobres e densidades de corrente maiores. A introdução de nitrogênio aumentou a dureza da superfície em ambos os aços inoxidáveis. A adição de nitrogênio melhorou a resistência à corrosão do aço inoxidável martensítico AISI 410, para as duas condições de nitretação usadas, medida através de polarização potenciodinâmica. Esse efeito foi avaliado através de um novo parâmetro chamado ?, dado pela diferença entre as densidades de corrente com erosão-corrosão e na condição estática (iCE-iS), para o aço nitretado, e essa mesma diferença para a condição de referência (aço solubilizado ou temperado e revenido). A adição de 0,2% de nitrogênio diminuiu em 88% a corrosão aumentada por erosão. Aumentando a 0,4% o teor de nitrogênio, esta diminuição também ocorre, sendo de 87%. O processo de remoção de material da superfície do aço inoxidável martensítico temperado e revenido é dominado pela corrosão aumentada por erosão, enquanto que no aço nitretado, o nitrogênio promove a mudança de regime para uma condição de erosão aumentada por corrosão. Observou-se que a adição de nitrogênio melhorou a resistência à corrosão, a resistência à erosão e a resistência à erosão-corrosão do aço inoxidável austenítico AISI 304L. Notou-se, também, o aumento significativo do potencial de pite com a elevação do teor de nitrogênio. As superfícies das marcas de desgaste das amostras nitretadas mostraram-se menos rugosas, mostrando o efeito benéfico do nitrogênio na resistência à corrosão do aço austenítico. A adição de 0,25% de nitrogênio diminuiu em 25% a corrosão aumentada por erosão. Aumentando o teor de nitrogênio para 0,55%, esta diminuição também foi observada, sendo de 56%. O processo de remoção de material da superfície do aço inoxidável austenítico é dominado pelo desgaste erosivo. Finalmente, a introdução de nitrogênio parece não ter influência notável no potencial de corrosão para nenhum dos aços aqui estudados. O mecanismo fundamental para a melhora na resistência à corrosão com a introdução de nitrogênio na estrutura dos aços inoxidáveis estudados, está relacionado com a produção de íons amônio durante a dissolução da superfície, produzindo um aumento de pH da solução e possibilitando uma repassivação mais fácil da superfície. / Corrosion-erosion processes are commonly found in pipes, valves and many other components for chemical, petrochemical and marine applications. When corrosion and erosion act together the damage mechanisms are complex and usually the mass losses are higher than the sum of the separate material losses due to corrosion and erosion. Stainless steels have been widely used in different components working in systems under combined corrosive and erosive effects. Martensitic stainless steels are suitable for manufacturing components with high mechanical properties and moderate corrosion resistance, while austenitic stainless steels are chosen for conditions where a better corrosion resistance is needed, even though their mechanical properties are poor. It has been shown that nitrogen addition to conventional stainless steels can improve both mechanical and corrosion properties. Very few research papers have been published about the corrosion-erosion synergism of high nitrogen stainless steels. In this research, the effect of nitrogen, introduced by solid state alloying, on the corrosionerosion resistance of a martensitic and an austenitic stainless steel tested in 3.5% NaClquartz slurry was studied. For this purpose, AISI 304L and AISI 410 samples were high temperature gas nitrided under different nitrogen pressures. 0.2 and 0.4% N martensitic samples and 0.25 and 0.55% N austenitic samples were obtained. Samples without nitrogen, but submitted to the same thermal cycle, were used as comparison materials in the tests. Corrosion, erosion and corrosion-erosion tests were conducted in a jet-like device. Two kinds of tests were developed: mass loss measurements and electrochemical polarization. The topography of the surface was observed after the wear tests using optical and scanning electron microscopy. This information, together with the results of mass losses and electrochemical tests were used to establish the degradation mechanisms of the tested materials under the different testing conditions and the effect of the introduction of nitrogen in the steel structure. The results showed that the polarization curves change a lot with the testing conditions. The corrosion and pitting potential decreased and the passive current density increased with the increase of aggressiveness of the testing conditions, shifting the curves to less noble potentials and higher current densities. Nitrogen additions increased the hardness of the nitrided surfaces in both steels. Nitrogen also improved the corrosion resistance of the AISI 410 stainless steel for both nitriding conditions. The effect of nitrogen was analyzed through a new parameter ?, given by the difference between the current densities under erosion-corrosion and the static condition (iCEiS), for the nitrided steels and the same difference for the standard condition (solubilized or quenched and tempered steels). The increase of the nitrogen content of the martensitic surface up to 0.2% reduced 88% the corrosion augmented by erosion. When the nitrogen content at the surface is 0.4%, the reduction of the corrosion augmented by erosion term was 87%. The mass removal process for the quenched and tempered condition is controlled by corrosion assisted by erosion, while for the nitrided surface is erosion assisted by corrosion. Nitrogen additions improved the corrosion, erosion and erosion-corrosion resistance of the austenitic stainless steel AISI 304L. The pitting potential noticeably increased with the increase of the nitrogen content. Smoother wear mark contours on the nitrided surface indicate a favorable effect of nitrogen on the corrosion-erosion synergism. Adding 0.25% N to the alloy decreased the corrosion augmented by erosion in the passive region by 25%, and adding 0.55% N reduced it by 56%. The mass removal process, in this case, was controlled by erosion. Finally, nitrogen addition does not seem to affect the corrosion potential of both steels studied in this work. The main mechanism to increase the corrosion resistance of the studied steels with the introduction of nitrogen is related to production of ammonia during the dissolution of the steel surface. The pH of the solution increases, and the surface can easily repassivate.
5

Estudo do desgaste erosivo-corrosivo de aços inoxidáveis de alto nitrogênio em meio lamacento. / Erosion-corrosion wear of high nitrogen stainless steels in a slurry.

Diana Maria López Ochoa 23 November 2007 (has links)
Os processos de erosão-corrosão são comumente encontrados em tubulações, válvulas e outros componentes usados na indústria química, petroquímica e na exploração de minérios. Quando a corrosão e a erosão atuam conjuntamente, os mecanismos de dano são complexos e em geral as perdas de massa associadas com esta combinação de processos são maiores do que a soma das perdas geradas pela erosão ou a corrosão atuando separadamente. Os aços inoxidáveis são materiais amplamente usados neste tipo de indústrias. A série martensítica é usada quando se necessita de boas propriedades mecânicas e moderada resistência à corrosão, enquanto que a austenítica é usada para condições onde é necessária uma boa resistência à corrosão, ainda que as propriedades mecânicas deste tipo de aço não sejam muito altas. Adições de nitrogênio aos aços inoxidáveis melhoram tanto a resistência à corrosão quanto a resistência mecânica, no entanto, poucos trabalhos têm sido desenvolvidos sobre o sinergismo erosão-corrosão dos aços inoxidáveis de alto nitrogênio. Neste trabalho, estuda-se o efeito da adição de nitrogênio, em solução sólida, na resistência à erosão-corrosão de um aço inoxidável martensítico AISI 410 e um austenítico AISI 304L em lama composta por 3,5% de NaCl e partículas de quartzo. Para tanto foram nitretadas, em alta temperatura, amostras destes aços sob diferentes pressões. Foram obtidas amostras martensíticas com 0,2 e 0,4% de nitrogênio e austeníticas com 0,25 e 0,55% de nitrogênio em solução sólida. Amostras sem nitrogênio foram usadas como material de referência. Foram desenvolvidos dois tipos de ensaios em dispositivo tipo jato: medidas de perda de massa e de polarização potenciodinâmica. A topografia das superfícies testadas foi observada usando microscopia óptica e eletrônica de varredura. Essa informação, conjuntamente com os resultados de perda de massa e dos ensaios eletroquímicos, foi usada para estabelecer os mecanismos de degradação dos materiais estudados, nas diferentes condições de ensaio, e os efeitos da introdução de nitrogênio na estrutura dos aços. Dos resultados obtidos neste trabalho, observa-se que as curvas de polarização potenciodinâmica são sensíveis às variações nas condições de ensaio, como a presença de fluxo e a introdução de partículas. Em geral, o potencial de corrosão e de pite diminuíram e a densidade de corrente passiva aumentou com o aumento da agressividade do ensaio, deslocando as curvas para potenciais menos nobres e densidades de corrente maiores. A introdução de nitrogênio aumentou a dureza da superfície em ambos os aços inoxidáveis. A adição de nitrogênio melhorou a resistência à corrosão do aço inoxidável martensítico AISI 410, para as duas condições de nitretação usadas, medida através de polarização potenciodinâmica. Esse efeito foi avaliado através de um novo parâmetro chamado ?, dado pela diferença entre as densidades de corrente com erosão-corrosão e na condição estática (iCE-iS), para o aço nitretado, e essa mesma diferença para a condição de referência (aço solubilizado ou temperado e revenido). A adição de 0,2% de nitrogênio diminuiu em 88% a corrosão aumentada por erosão. Aumentando a 0,4% o teor de nitrogênio, esta diminuição também ocorre, sendo de 87%. O processo de remoção de material da superfície do aço inoxidável martensítico temperado e revenido é dominado pela corrosão aumentada por erosão, enquanto que no aço nitretado, o nitrogênio promove a mudança de regime para uma condição de erosão aumentada por corrosão. Observou-se que a adição de nitrogênio melhorou a resistência à corrosão, a resistência à erosão e a resistência à erosão-corrosão do aço inoxidável austenítico AISI 304L. Notou-se, também, o aumento significativo do potencial de pite com a elevação do teor de nitrogênio. As superfícies das marcas de desgaste das amostras nitretadas mostraram-se menos rugosas, mostrando o efeito benéfico do nitrogênio na resistência à corrosão do aço austenítico. A adição de 0,25% de nitrogênio diminuiu em 25% a corrosão aumentada por erosão. Aumentando o teor de nitrogênio para 0,55%, esta diminuição também foi observada, sendo de 56%. O processo de remoção de material da superfície do aço inoxidável austenítico é dominado pelo desgaste erosivo. Finalmente, a introdução de nitrogênio parece não ter influência notável no potencial de corrosão para nenhum dos aços aqui estudados. O mecanismo fundamental para a melhora na resistência à corrosão com a introdução de nitrogênio na estrutura dos aços inoxidáveis estudados, está relacionado com a produção de íons amônio durante a dissolução da superfície, produzindo um aumento de pH da solução e possibilitando uma repassivação mais fácil da superfície. / Corrosion-erosion processes are commonly found in pipes, valves and many other components for chemical, petrochemical and marine applications. When corrosion and erosion act together the damage mechanisms are complex and usually the mass losses are higher than the sum of the separate material losses due to corrosion and erosion. Stainless steels have been widely used in different components working in systems under combined corrosive and erosive effects. Martensitic stainless steels are suitable for manufacturing components with high mechanical properties and moderate corrosion resistance, while austenitic stainless steels are chosen for conditions where a better corrosion resistance is needed, even though their mechanical properties are poor. It has been shown that nitrogen addition to conventional stainless steels can improve both mechanical and corrosion properties. Very few research papers have been published about the corrosion-erosion synergism of high nitrogen stainless steels. In this research, the effect of nitrogen, introduced by solid state alloying, on the corrosionerosion resistance of a martensitic and an austenitic stainless steel tested in 3.5% NaClquartz slurry was studied. For this purpose, AISI 304L and AISI 410 samples were high temperature gas nitrided under different nitrogen pressures. 0.2 and 0.4% N martensitic samples and 0.25 and 0.55% N austenitic samples were obtained. Samples without nitrogen, but submitted to the same thermal cycle, were used as comparison materials in the tests. Corrosion, erosion and corrosion-erosion tests were conducted in a jet-like device. Two kinds of tests were developed: mass loss measurements and electrochemical polarization. The topography of the surface was observed after the wear tests using optical and scanning electron microscopy. This information, together with the results of mass losses and electrochemical tests were used to establish the degradation mechanisms of the tested materials under the different testing conditions and the effect of the introduction of nitrogen in the steel structure. The results showed that the polarization curves change a lot with the testing conditions. The corrosion and pitting potential decreased and the passive current density increased with the increase of aggressiveness of the testing conditions, shifting the curves to less noble potentials and higher current densities. Nitrogen additions increased the hardness of the nitrided surfaces in both steels. Nitrogen also improved the corrosion resistance of the AISI 410 stainless steel for both nitriding conditions. The effect of nitrogen was analyzed through a new parameter ?, given by the difference between the current densities under erosion-corrosion and the static condition (iCEiS), for the nitrided steels and the same difference for the standard condition (solubilized or quenched and tempered steels). The increase of the nitrogen content of the martensitic surface up to 0.2% reduced 88% the corrosion augmented by erosion. When the nitrogen content at the surface is 0.4%, the reduction of the corrosion augmented by erosion term was 87%. The mass removal process for the quenched and tempered condition is controlled by corrosion assisted by erosion, while for the nitrided surface is erosion assisted by corrosion. Nitrogen additions improved the corrosion, erosion and erosion-corrosion resistance of the austenitic stainless steel AISI 304L. The pitting potential noticeably increased with the increase of the nitrogen content. Smoother wear mark contours on the nitrided surface indicate a favorable effect of nitrogen on the corrosion-erosion synergism. Adding 0.25% N to the alloy decreased the corrosion augmented by erosion in the passive region by 25%, and adding 0.55% N reduced it by 56%. The mass removal process, in this case, was controlled by erosion. Finally, nitrogen addition does not seem to affect the corrosion potential of both steels studied in this work. The main mechanism to increase the corrosion resistance of the studied steels with the introduction of nitrogen is related to production of ammonia during the dissolution of the steel surface. The pH of the solution increases, and the surface can easily repassivate.
6

Effects of tempering on corrosion properties of high nitrogen alloyed tooling steels in pyrolysis oil / Korrosionsegenskaper hos kväveinnehållande verktygsstål i pyrolysolja. Effekter av härding

Reza Gholi, Ashkan January 2011 (has links)
Nowdays biofuels are becoming a good alternative for petroleum fuels due to environmental issues like high carbon dioxide emission and increasing vehicles population, together with the high price and fast depletion of petroleum oils. This project aims to investigate the corrosive effects of wood Pyrolysis oil on a special grade of nitrogen alloyed tooling steels to be used for injector nozzles in Diesel engines, where high stress and strain encounter high acidity and corrosivity of the Pyrolysis oil and cause breakdown over short periods. Vanax 35 and Vanax 75 manufactured in Uddeholm are two types of powder metallurgy high nitrogen alloyed martensitic stainless steel with a high combination of hardness (over 56HRC), low friction properties, wear resistance, anti-galling and corrosion properties. In this work, the newly developed Vanax material together with the tool steels Elmax and AISI O1 were tempered at various temperatures from 200°Cto 500°C. The tempered steels were then exposed in pyrolysis oil at 4 different temperatures, 20°C, 70°C, 95°Cand 130°C. The materials were investigated by means of corrosion rate measurements, microscopy (LOM, SEM, confocal) and Thermo-Calc calculations. The corrosion rate measurement proved that Vanax tempered at lower ranges (200°C, 400°Cand 450°C) showed the best corrosion resistance while higher tempering temperatures such as 500°C, Elmax and AISI O1 tempered at 200°Csuffered a great deal of general corrosion attack. Thermo-Calc calculations showed the formation of a hard phase, VN as primary nitrides instead of primary chromium carbides at austenizing temperature for the Vanax group. Higher amount of chromium is dissolved in solid solution in Vanax at austenizing temperature hence the martensite matrix has, after quenching, a higher chromium content that helps passivation. The loss in corrosion properties at higher tempering temperatures was due to the formation of CrN secondary phase at around 400˚C which reduces the chromium content of the martensite matrix. The results of light optical and confocal microscopy showed the presence of pits when tempering at 400˚C and 450˚C. No pits were observed at 200˚C. Elmax was not passivated at all which resulted in general corrosion attacks, due to a high chromium loss from the austenite solid solution at the austenizing procedure temperature and also the tempering temperatures. The chromium depletion from the austenite can be explained by a high carbon and a low nitrogen content in the composition which resulted in formation of a high amount of Cr7C3.
7

Chemistry of Complex High-Nitrogen Materials

Matthew Gettings (10692975) 07 May 2021 (has links)
<p><i>Chemistry of Complex High-Nitrogen Materials</i> begins with a brief background on a few high explosive materials and their applications, followed by synthesis routes and characterization methods of energetic materials. Several new complex high-nitrogen materials where synthesized and presented in the following chapters. These novel energetics include several nitrilimines, triazoles, tetrazoles, methyl sydnone imines, azasydnones, and an annulated heterocycle. Their energetic properties are discussed and compared with other well-known explosive materials.</p>
8

Étude in situ des évolutions microstructurales d'un acier inoxydable martensitique à l'azote au cours d'une succession de traitements thermiques / In situ study of the microstructural evolutions of a nitrogen martensitic stainless steel during a succession of thermal treatments

Bénéteau, Adeline 14 March 2007 (has links)
L’acier inoxydable martensitique à l’azote XD15NW (Fe–15,5%Cr–0,4%C–0,2%N–1,7%Mo–0,3%V) est un candidat attractif pour les bagues de roulement des moteurs spatiaux. Il possède de bonnes propriétés mécaniques et une bonne résistance à la corrosion grâce à l’azote qui contribue à la formation de précipités de petite taille dans une matrice à grains fins. Nous avons étudié les évolutions microstructurales de cet acier au cours d’une succession de traitements thermiques: austénitisation et trempe, revenu, traitement de surface par induction. Outre les techniques usuelles d’analyse microstructurale (MEB, MET, dilatométrie), nous avons utilisé la diffraction des rayons X de haute énergie in situ (rayonnement synchrotron). Cette technique nous a permis d’obtenir les cinétiques d’évolution des phases en fonction de la température et du temps, les gradients de microstructure au sein de pièces traitées par induction en surface et les évolutions de paramètres de maille des phases / The nitrogen martensitic stainless steel XD15NW (Fe–15,5%Cr–0,4%C–0,2%N–1,7%Mo–0,3%V) is an attractive candidate for the bearing rings of the space engines turbopumps. It owns good mechanical properties and a good corrosion resistance thanks to the nitrogen which contributes to the formation of little size precipitates in a fine grains matrix. The microstructural evolutions of this steel during a succession of thermal treatments were studied: austenitisation and quenching, tempering, induction surface heat treatment. In addition to the usual techniques of microstructural analysis (SEM, TEM, dilatometry), the in situ high energy synchrotron X-ray diffraction was used. It allowed to obtain the evolution kinetics of the phases as a function of temperature and time, the microstructural gradients in induction treated samples and the lattice parameters evolutions which are linked to the chemical composition or the internal stresses evolutions of the phases
9

Microstructure and Fatigue Analysis of PM-HIPed Alloys : A Focus on Inconel 625 and High-Nitrogen Tool Steel

Javadzadeh Kalahroudi, Faezeh January 2024 (has links)
Nickel-based superalloys and tool steels are well-known high-performance alloys due to their extensive use in many different industries. Nickel-based superalloys have found their way into aircraft, aerospace, marine, chemical, and petrochemical industries owing to their excellent high-temperature corrosion and oxidation resistance. On the other hand, tool steels could provide a combination of outstanding corrosion and wear resistance. They can play an important role in cutting and wear applications and manufacturing plastic extrusion and food processing components. Near-net shape manufacturing using powder metallurgy (PM) and hot isostatic pressing (HIP) can serve as an efficient manufacturing process to produce these alloys. This technology can successfully tackle conventional manufacturing challenges of highly alloyed materials i.e. segregation during the casting process or cracks during hot working processes of Ni-based superalloys, and carbide segregation and formation of large and irregularly shaped carbides in wrought and hot rolled tool steels. However, the presence of precipitates on prior particle boundaries (PPBs) in Ni-based superalloys, and metallurgical defects like non-metallic inclusions in both Ni-based superalloys and tool steels may affect the fatigue performance of these PM-HIPed products. This licentiate thesis aims to investigate the microstructure and fatigue behavior of two PM-HIPed alloys i.e. Inconel 625 and high-nitrogen tool steel. The results confirm precipitation along PPBs in PM-HIPed Inconel 625; however, no effect was detected in the fractography studies of the high cycle fatigue samples, and tensile properties were comparable with wrought materials reported in the literature. On the other hand, the microstructure of PM-HIPed high-nitrogen tool steel displayed dispersed precipitates and no traces of PPBs. Moreover, in both cases, i.e. very high cycle fatigue of PM-HIPed high-nitrogen tool steel and high cycle fatigue of PM-HIPed Inconel 625, fatigue crack initiation was attributed to the presence of non-metallic inclusions, either individually or agglomerated with precipitates. This underscores the significance of the manufacturing process in fatigue performance. / Near-net shape manufacturing using powder metallurgy (PM) and hot isostatic pressing (HIP) can serve as an efficient manufacturing process to produce high-performance alloys. Among the variety of engineering alloys, Nickel-based superalloys and tool steels stand out as well-known high-performance alloys, widely employed across diverse industries. PM-HIP technology can successfully address conventional manufacturing challenges associated with highly alloyed materials, such as segregation during the casting process or cracks during hot working processes of Ni-based superalloys, and carbide segregation and the formation of large and irregularly shaped carbides in wrought and hot rolled tool steels. However, the presence of precipitates on prior particle boundaries in Ni-based superalloys, and metallurgical defects like non-metallic inclusions in both alloys, may affect the fatigue performance of these PM-HIPed products. The present study aims to assess two PM-HIPed alloys, namely Inconel 625 and high-nitrogen tool steel, with a comprehensive examination of their microstructure and fatigue properties. The objectives include examining the microstructural features introduced by the PM-HIP process and understanding how they influence fatigue failure mechanisms in these alloys.
10

Treatment of mature urban landfill leachates by anammox process

Ruscalleda Beylier, Maël 17 February 2012 (has links)
This thesis results from the collaborative projects between the LEQUIA-UdG group and Cespa (a company in charge of several landfill sites in Spain). The aim of the work was the development of a suitable alternative treatment for nitrogen removal from mature landfill leachates. The thesis presents the application of the anammox (anaerobic ammonium oxidation process) process to treat ammonium rich leachates as the second step of the PANAMMOX® process. The work deals with preliminary studies about the characteristics of the anammox process in a SBR, with special focus on the response of the biomass to nitrite exposure. The application of the anammox process with leachate was first studied in a lab-scale reactor, to test the effect of the leachate matrix on anammox biomass and its progressive adaptation. Finally, a start-up strategy is developed and applied for the successful start-up of a 400L anammox SBR in less than 6 months. / Aquesta tesi és fruit de la col•laboració entre el grup LEQUIA-UdG i Cespa. L'objectiu del treball va ser el desenvolupament d'un tractament alternatiu per a l'eliminació biològica de nitrogen dels lixiviats madurs d'abocador. La tesi presenta l'aplicació del procés anammox (anaerobic ammonium oxidation) per tractar elevades càrregues de nitrogen en el segon pas del procés PANAMMOX ®. El treball inclou estudis preliminars sobre les característiques del procés de anammox en un SBR, amb especial atenció a la resposta de la biomassa a l'exposició de nitrit. L'aplicació del procés anammox amb lixiviat es va estudiar inicialment en un reactor a escala de laboratori, per provar l'efecte de la matriu del lixiviat sobre la biomassa anammox i la seva adaptació progressiva. Finalment, es va desenvolupar una estratègia de posada en marxa que va ser aplicada amb èxit per a la posada en marxa d'un SBR anammox de 400L en menys de 6 mesos.

Page generated in 0.2393 seconds