• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhanced Conditions for High Performance Machining of Hardened H13 Die Steel

Elfizy, Aml 08 1900 (has links)
The availability of sophisticated machine tools, together with advanced cutting tool designs and high performance coatings has allowed machining to meet many challenges. A significant remaining challenge is the competitive milling of hardened steels at moderate to high cutting speeds. This is of particular importance for the die and mould making industry. Despite the necessity to achieve higher production rates and improved surface finish, cutting speeds above the range of 300-600 m/min are still not possible. This limitation is due to the combination of high mechanical, thermal and chemical interactions that are taking place on the tool surface during cutting. To address this situation, an extensive amount of research has been focused on developments associated with hard coatings such as nano-multilayered hard PVD coatings that exhibit novel mechanical and thermal properties. The development of methodologies for designing a cutting tool with a strong cutting edge micro-geometry has set guidelines for selecting proper cutting edge preparation for specific cutting applications. The results indicate that, the development of new hard coating designs is the most effective way to improve the service life of coated carbide tools for hard high speed milling applications. The developments of both robust and rigid substrate designs with adaptive cutting edge micro-geometries assist the cutting tool performance by favoring the surface adaptability of the deposited coating. The developments of different strategies for dry air cooling that provide a "soft-cool" environment seem to have a beneficial impact on cutting performance and tool life improvement. Dry air cooling is found to be more effective than chilled-air cooling and minimum-quantity-lubrication (MQL). Therefore, the utilization of a cutting environment tailored to meet the requirements of both the tool and the coating while providing sufficient air flow to remove chips from the cutting zone will complement the adaptability of the whole tool-workpiece-chip system. / Thesis / Master of Applied Science (MASc)
2

Dynamic Modeling Of Spindle-tool Assemblies In Machining Centers

Erturk, Alper 01 May 2006 (has links) (PDF)
Regenerative chatter is a well-known machining problem that results in unstable cutting process, poor surface quality, reduced material removal rate and damage on the machine tool itself. Stability lobe diagrams supply stable depth of cut &amp / #8211 / spindle speed combinations and they can be used to avoid chatter. The main requirement for generating the stability lobe diagrams is the system dynamics information at the tool tip in the form of point frequency response function (FRF). In this work, an analytical model that uses structural coupling and modification methods for modeling the dynamics of spindle-holder-tool assemblies in order to obtain the tool point FRF is presented. The resulting FRF obtained by the model can be used in the existing analytical and numerical models for constructing the stability lobe diagrams. Timoshenko beam theory is used in the model for improved accuracy and the results are compared with those of Euler-Bernoulli beam theory. The importance of using Timoshenko beam theory in the model is pointed out, and the circumstances, under which the theory being used in the model becomes more important, are explained. The model is verified by comparing the results obtained by the model with those of a reliable finite element software for a case study. The computational superiority in using the model developed against the finite element software is also demonstrated. Then, the model is used for studying the effects of bearing and contact dynamics at the spindle-holder and holder-tool interfaces on the tool point FRF. Based on the results of the effect analysis, a new approach is suggested for the identification of bearing and interface parameters from experimental measurements, which is demonstrated on a spindle-holder-tool assembly. The model is also employed for studying the effects of design and operational parameters on the tool point FRF, from the results of which, suggestions are made regarding the design of spindles and selection of operational parameters. Finally, it is experimentally demonstrated that the stability lobe diagram of an assembly can be predicted pretty accurately by using the model proposed, and furthermore the stability lobe diagram can be modified in a predictable manner for improving chatter stability.

Page generated in 0.1371 seconds