• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HIGH-RESOLUTION 3D SEISMIC INVESTIGATIONS OF HYDRATE-BEARING FLUID-ESCAPE CHIMNEYS IN THE NYEGGA REGION OF THE VØRING PLATEAU, NORWAY

Westbrook, Graham K., Exley, Russell, Minshull, T.A., Nouzé, Hervé, Gailler, Audrey, Jose, Tesmi, Ker, Stephan, Plaza, Andreia 07 1900 (has links)
Hundreds of pockmarks and mounds, which seismic reflection sections show to be underlain by chimney-like structures, exist in southeast part of the Vøring plateau, Norwegian continental margin. These chimneys may be representative of a class of feature of global importance for the escape of methane from beneath continental margins and for the provision of a habitat for the communities of chemosynthetic biota. Thinning of the time intervals between reflectors in the flanks of chimneys, observed on several high-resolution seismic sections, could be caused by the presence of higher velocity material such as hydrate or authigenic carbonate, which is abundant at the seabed in pockmarks in this area. Evidence for the presence of hydrate was obtained from cores at five locations visited by the Professor Logachev during TTR Cruise 16, Leg 3 in 2006. Two of these pockmarks, each about 300-m wide with active seeps within them, were the sites of high-resolution seismic experiments employing arrays of 4-component OBS (Ocean-Bottom Seismic recorders) with approximately 100-m separation to investigate the 3D variation in their structure and properties. Shot lines at 50-m spacing, run with mini-GI guns fired at 8-m intervals, provided dense seismic coverage of the sub-seabed structure. These were supplemented by MAK deep-tow 5-kHz profiles to provide very high-resolution detail of features within the top 1-40 m sub-seabed. Travel-time tomography has been used to detail the variation in Vp and Vs within and around the chimneys. Locally high-amplitude reflectors of negative polarity in the flanks of chimneys and scattering and attenuation within the interiors of the chimneys may be caused by the presence of free gas within the hydrate stability field. A large zone of free gas beneath the hydrate stability field, apparently feeding several pockmarks, is indicated by attenuation and velocity pull-down of reflectors.
2

A GEOPHYSICAL STUDY OF A POCKMARK IN THE NYEGGA REGION, NORWEGIAN SEA

Jose, Tesmi, Minshull, T.A., Westbrook, Graham K., Nouzé, Hervé, Ker, Stephan, Gailler, Audrey, Exley, Russell, Berndt, Christian 07 1900 (has links)
Over the last decade pockmarks have proven to be important seabed features that provide information about fluid flow on continental margins. Their formation and dynamics are still poorly constrained due to the lack of proper three dimensional imaging of their internal structure. Numerous fluid escape features provide evidence for an active fluid-flow system on the Norwegian margin, specifically in the Nyegga region. In June-July 2006 a high-resolution seismic experiment using Ocean Bottom Seismometers (OBS) was carried out to investigate the detailed 3D structure of a pockmark named G11 in the region. An array of 14 OBS was deployed across the pockmark with 1 m location accuracy. Shots fired from surface towed mini GI guns were also recorded on a near surface hydrophone streamer. Several reflectors of high amplitude and reverse polarity are observed on the profiles indicating the presence of gas. Gas hydrates were recovered with gravity cores from less than a meter below the seafloor during the cruise. Indications of gas at shallow depths in the hydrate stability field show that methane is able to escape through the water-saturated sediments in the chimney without being entirely converted into gas hydrate. An initial 2D raytraced forward model of some of the P wave data along a line running NE-SW across the G11 pockmark shows, a gradual increase in velocity between the seafloor and a gas charged zone lying at ~300 m depth below the seabed. The traveltime fit is improved if the pockmark is underlain by velocities higher than in the surrounding layer corresponding to a pipe which ascends from the gas zone, to where it terminates in the pockmark as seen in the reflection profiles. This could be due to the presence of hydrates or carbonates within the sediments.

Page generated in 0.0935 seconds