• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of high speed inlets using global measurement techniques

Che Idris, Azam January 2014 (has links)
After the end of the NASA space shuttle programme, there has been resurgence of interest in developing a single stage-to-orbit spacecraft. The key technology to realize this dream is the airbreathing scramjet engine. The scramjet concept has been around for decades, but much work is still needed in order to eliminate the remaining obstacles to develop a practical working prototype of the engine. Many such obstacles are related to the inlet which functions as the main compression unit for the engine. Typically, a high speed inlet is designed to function properly in a single flight condition. Such an inlet would experience adverse flow conditions related to various shock-shock interactions, viscous effects, shock-boundary layer interactions, and many other flow phenomena at off-design conditions. The traditional mechanism to mitigate the adverse flow conditions is by varying the inlet geometry at off-design conditions. There are still gaps in understanding the behaviour of inlets at off-design conditions and the effectiveness of variable geometry as inlet flow control. This is partly due to complex flow diagnostics setup, which limits the type, quantity and quality of information that can be extracted from the inlet flow. The first objective of this thesis was to develop a global inlet measurement system that can provide an abundance of information on inlet flow. The pressure sensitive paint method was employed together with other methods to provide comprehensive understanding on inlet flow characteristics. Calculation of Mach number at the isolator exit using the isolator sidewall pressure map was successfully demonstrated. The measurement of Mach number at the isolator exit has allowed for performance of the inlet to be calculated without the need for intrusive flow diagnostics tools used by previous researchers. The global measurement system was then employed to investigate the characteristics of the scramjet inlet operating at various off-design conditions. Complex shock structures were observed at the inlet cowl entrance as the angle-of-attack was increased. The relationship of flow quality and inlet performance was examined and discussed. General improvements on the inlet performance were obtained if the size of separation on the compression ramp was reduced. The inlet was also observed to perform poorly when compression shocks impinged on the inner cowl surface. Cowl deflections were demonstrated to be effective in controlling the internal flow of the inlet and improving its performance. An exploratory study on the role of micro-vortex generators to control boundary layer separation on scramjet inlets has been included as well. Strategies for optimizing an inlet at off-design conditions were analysed, and it was found that any variable geometry combination must maintain high throat-to-freestream Mach number ratio in order to preserve high inlet performance.
2

Aerodynamic Optimization of Compact Engine Intakes for High Subsonic Speed Turbofans

Udit Vyas (6636125) 10 June 2019 (has links)
<p>Within the gas turbine industry, turbofan engines are widely implemented to enhance engine efficiency, specific thrust, and specific fuel consumption. However, these turbofans have yet to be widely implemented into microgas turbine engines. As turbofans become implemented into smaller engines, the need to design engine intakes for high-speed mission becomes more vital. In this work, a design procedure for compact, highly diffusive engine intakes for high subsonic speed applications is set about. The aerodynamic tradeoffs between cruise and takeoff flights are discussed and methods to enhance takeoff performance without negatively impacting high-speed cruise performance is discussed. Intake performance is integrated into overall engine analysis to help guide future mission analyses. Finally, an experimental model for engine intakes is developed for application to linear wind tunnels; allowing future designers to effectively validate numerical results.<br></p> <p>A multi-objective optimization routine is performed for compact engine intakes at a Mach number of 0.9. This optimization routine yielded a family of related curves that maximize intake diffusive capability and minimize intake pressure losses. Design recommendations to create such optimal intakes are discussed in this work so that future designers do not need to perform an optimization. Due to high diffusion rate of the intake, the intake performance at takeoff suffers greatly (as measured by massflow ingestion). Methods to enhance takeoff performance, from designing a variable geometry intake, to creating slots, to sliding intake components are evaluated and ranked for future designers to get an order of magnitude understanding of the types of massflow enhancements possible. Then, off-design performance of the intake is considered: with different Mach number flights, non-axial flow conditions, various altitudes, and unsteady engine operation considered. These off-design effects are evaluated to generate an intake map across a wide engine operational envelope. This map is then inputted into an engine model to generate a performance map of an engine; which allows for mission planning analysis. Finally, various methods to replicate intake flow physics in a linear wind tunnel are considered. It is shown that replicating diffuser curvature in a linear wind tunnel allows for best replication of flow physics. Additionally, a method to non-dimesnsionalize intake performance for application to a wind tunnel is developed. </p> <p>This work can be utilized by future engine intake designers in a variety of ways. The results shown here can help guide future designers create highly compact diffuser technology, capable of operating across a wide breadth of conditions. Methods to assess intake performance effects on overall engine performance are demonstrated; and an experimental approach to intake analysis is developed.</p>

Page generated in 0.0371 seconds