1 |
Strengthening Aluminum By Zirconium and ChromiumYan, Shi 02 January 2013 (has links)
The Al-Zr system is used to form a thermally stable strengthening phase in high temperature aluminum-base casting alloys. These alloys have good strength at elevated temperature due to the precipitation of coherent metastable Al3Zr particles upon decomposition of the supersaturated Al-Zr solid solution by a carefully designed heat treatment. Formation of the Al3Zr particles occurs by a peritectic reaction, which decrees that once formed, the particles cannot be dissolved by a solid-state homogenization process. Accordingly, melting the alloy must serve as the homogenization step of the precipitation hardening process; and solidification during casting must serve as the quenching step. Unfortunately, a prohibitively fast solidification rate is necessary to obtain a solid solution with as little as 0.4% Zr in Al. It is found that adding Cr to Al-0.4wt%Zr binary alloy makes it easier to form the supersaturated solid solution, and the ternary Al-0.4wt%Zr- 0.8wt%Cr alloy has better room and elevated temperature tensile properties than the binary Al- 0.4wt%Zr alloy. Various one-step and two-step isothermal aging cycles were investigated in order to arrive at the optimum aging schedule for the Al-0.4wt%Zr-0.8wt%Cr. It is found that soaking the alloy at 400C for 24 hours is optimum; and employing a two-step aging schedule reduces the aging time without sacrificing strength. The two- step aging schedule includes soaking the alloy at 375C for 3 hours and then at 425C for an additional 12 hours. Examination of the precipitates that form in the Al-0.4wt%Zr-0.8wt%Cr with High Resolution Transmission Electron Microscopy (HRTEM) shows that they have the L12 crystal structure. Energy Dispersive Spectrometry (EDS) shows that the particles contain only aluminum and zirconium whereas the matrix is a solid solution of chromium in aluminum. Hence, it is suggested that zirconium strengthens the Al- 0.4wt%Zr-0.8wt%Cr alloy by a precipitation hardening mechanism and chromium further enhances the strength by solid solution strengthening.
|
2 |
Oxidation Behavior of Nb-Si-Ti-Cr-Al-X Based Multi-Component AlloysXu, Mengyao 03 October 2006 (has links)
No description available.
|
3 |
Ab-initio elastic and thermodynamic properties of high-temperature cubic intermetallics at finite temperaturesWilliams, Michael Eric 15 May 2009 (has links)
In thiswork we present the development of a method for the prediciton of finite temperature
elastic and thermodynamic properties of cubic, non-magnetic unary and binary metals
from first principles calculations. Vibrational, electronic and anharmonic contributions to
the free energy are accounted for while magnetic effects are neglected. The method involves
the construction of a free energy surface in volume/temperature space through the use of
quasi-harmonic lattice dynamics. Additional strain energy calculations are performed and
fit to the derived thermal expansion to present the temperature dependence of single crystal
elastic constants. The methods are developed within the framework of density functional
theory, lattice dynamics, and finite elasticity. The model is first developed for FCC aluminum
and BCC tungsten which demonstrate the validity of the model as well as some of
the limitations arising from the approximations made such as the effects of intrinsic anharmonicity.
The same procedure is then applied to the B2 systems NiAl, RuAl and IrAl which
are considred for high temperature applications. Overall there is excellent correlation between
the calculated properties and experimentally tabulated values. Dynamic methods for
the prediction of temperature dependent properties are also introduced and a groundwork
is laid for future development of a robust method.
|
4 |
Improving High Temperature Strength of 2219 Al Alloy by Minor Alloying AdditionsMondol, Sukla January 2015 (has links) (PDF)
Among Al alloys, 2219 Al alloy possesses highest strength at elevated temperatures. However, the application of this alloy is also restricted to a maximum temperature of 150°C, above which, the strengthening precipitates coarsen rapidly resulting in a steep loss in strength. In the present investigation, an attempt has been made to improve the elevated as well as the room temperature properties of commercial 2219 alloy by the addition of small amounts of Sc & Mg, Sc & Zr, and Nb & Zr, and these are designated as 2219ScMg, 2219ScZr and 2219NbZr alloys, respectively.
All the three alloys were cast in the form of strips in a water cooled copper mould using suction casting technique with a cooling rate of 102 to 103 K/s. The as-cast strips of 2219ScMg alloys were naturally aged and cold rolled by following three different routes (a) cold rolling, (b) homogenization and cold rolling and (c) hot rolling and cold rolling.
A significant improvement in strength has been achieved by all the three wrought processing routes with greater than 140 MPa increase in 0.2% proof stress at room temperature and greater than 110 MPa increase in 0.2% proof stress at 200°C as compared to 2219-T851 alloy having 0.2% proof stress of 345 MPa at room temperature and 205 MPa at 200°C. Hardness values, measured at room temperature after exposure at 200°C, remain stable up to 1000 h.
Microstructural analysis of 2219ScMg alloy reveals that Al3Sc or Al3(Sc,Zr) dispersoids form during casting and GP zones form on {100} and {111} plane during natural ageing. Subsequently, rolling introduces higher dislocation densities in the matrix. All these microstructural features contribute to the improvement of the room temperature strength of the alloy. On exposure at 200°C, GP zones transform to mainly θ′ and a few Ω precipitates. A finer, homogeneous distribution of θ′ and Ωprecipitates yields higher strength. Sc and Mg atoms are segregated at the θ′/matrix interface, which gives rise to slower growth kinetics of θ′ precipitates. As a result, the alloy exhibits better thermal stability at 200°C. For 2219ScZr and 2219NbZr alloys, the processing of the cast strip involves a two stage ageing procedure. This includes first stage ageing at 375°C for 2219ScZr alloy and at 400°C for 2219NbZr alloy. This is followed by solution treatment at 535°C for 30 minutes and second stage ageing at 200°C for both the alloys.
For 2219ScZr alloy, tensile tests performed at room temperature, 200°C and 250°C show 0.2% proof stress of 456 ± 22 MPa, 295 ± 20 MPa and 227 ± 2 MPa respectively. The alloy is found to be thermally stable at 200°C. It is found that the addition of Sc and Zr results in the formation of Al3(Sc,Zr) precipitates during ageing at 375°C. These precipitates are fully coherent with the matrix and have a significant precipitation hardening effect. They also stimulate the nucleation of θ′′ and θ′precipitates during ageing at 200°C making them finer, homogeneously distributed and thermally stable. Therefore, the strength of the alloy at ambient and elevated temperature is improved.
For 2219NbZr alloy, the tensile tests show that 0.2% proof stress is 409 ± 10 MPa at room temperature and 252 ± 22 MPa at 200°C. Microstructural observations reveal that the increase in strength is mainly due to the high volume fraction of Al3Zr precipitates, which form during ageing at 400°C, and due to the formation of θ′′ and θ′precipitates during ageing at 200°C. It is observed that Al3Zr precipitates facilitate the nucleation of θ′′ and θ′ precipitates making them finer, homogeneously distributed and thermally stable, as in the case of 2219ScZr alloy.
|
5 |
High temperature process to structure to performance material modelingBrandon T Mackey (17896343) 05 February 2024 (has links)
<p dir="ltr">In structural metallic components, a material’s lifecycle begins with the processing route, to produce a desired structure, which dictates the in-service performance. The variability of microstructural features as a consequence of the processing route has a direct influence on the properties and performance of a material. In order to correlate the influence processing conditions have on material performance, large test matrices are required which tend to be time consuming and expensive. An alternative route to avoid such large test matrices is to incorporate physics-based process modeling and lifing paradigms to better understand the performance of structural materials. By linking microstructural information to the material’s lifecycle, the processing path can be modified without the need to repeat large-scale testing requirements. Additionally, when a materials system is accurately modeled throughout its lifecycle, the performance predictions can be leveraged to improve the design of materials and components.</p><p dir="ltr">Ni-based superalloys are a material class widely used in many critical aerospace components exposed to coupling thermal and mechanical loads due to their increased resistance to creep, corrosion, oxidation, and strength characteristics at elevated temperatures. Many Ni-based superalloys undergo high-temperature forging to produce a desired microstructure, targeting specific strength and fatigue properties in order to perform under thermo-mechanical loads. When in-service, these alloys tend to fail as a consequence of thermo-mechanical fatigue (TMF) from either inclusion- or matrix- driven failure. In order to produce safer, cheaper and more efficient critical aerospace components, the micromechanical deformation and damage mechanisms throughout a Ni-based superalloy’s lifecycle must be understood. This research utilizes process modeling as a tool to understand the damage and deformation of inclusions in a Ni-200 matrix throughout radial forging as a means to optimize the processing conditions for improved fatigue performance. In addition, microstructural sensitive performance modeling for a Ni-based superalloy is leveraged to understand the influence TMF has on damage mechanisms.</p><p dir="ltr">The radial forging processing route requires both high temperatures and large plastic deformation. During this process, non-metallic inclusions (NMIs) can debond from the metallic matrix and break apart, resulting in a linear array of smaller inclusions, known as stringers. The evolution of NMIs into stringers can result in matrix load shedding, localized plasticity, and stress concentrations near the matrix-NMI interface. Due to these factors, stringers can be detrimental to the fatigue life of the final forged component. By performing a finite element model of the forging process with cohesive zones to simulate material debonding, this research contributes to the understanding of processing induced deformation and damage sequences on the onset of stringer formation for Alumina NMIs in a Ni-200 matrix. Through a parametric study, the interactions of forging temperature, strain rate, strain per pass, and interfacial decohesion on the NMI damage evolution metrics are studied, specifically NMI particle separation, rotation, and cavity formation. The parametric study provides a linkage between the various processing conditions parameters influence on detrimental NMI morphology related to material performance.</p><p dir="ltr">The microstructural characteristics of Ni-based superalloys, as a consequence of a particular processing route, creates a variability in TMF performance. The micromechanical failure mechanisms associated with TMF are dependent on various loading parameters, such as temperature, strain range, and strain-temperature phasing. Insights on the complexities of micromechanical TMF damage are studied via a temperature-dependent, dislocation density-based crystal plasticity finite element (CPFE) model with uncertainty quantification. The capabilities of the model’s temperature dependency are examined via direct instantiation and comparison to a high-energy X-ray diffraction microscopy (HEDM) experiment under coupled thermal and mechanical loads. Unique loading states throughout the experiment are investigated with both CPFE predictions and HEDM results to study early indicators of TMF damage mechanisms at the grain scale. The mesoscale validation of the CPFE model to HEDM experimental data provides capabilities for a well-informed TMF performance paradigm under various strain-temperature phase profiles. </p><p dir="ltr">A material’s TMF performance is highly dependent on the temperature-load phase profile as a consequence of path-dependent thermo-mechanical plasticity. To investigate the relationship between microstructural damage and TMF phasing effects, the aforementioned CPFE model investigates in-phase (IP) TMF, out-of-phase (OP) TMF, and iso-thermal (ISO) loading profiles. A microstructural sensitive performance modeling framework with capabilities to isolate phasing (IP, OP, and ISO) effects is presented to locate fatigue damage in a set of statistically equivalent microstructures (SEMs). Location specific plasticity, and grain interactions are studied under the various phasing profiles providing a connection between microstructural material damage and TMF performance.</p>
|
Page generated in 0.1156 seconds