• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the Structure-Activity Relationship of Pseudo-Single-Crystal Platinum Electrodes by Scanning Electrochemical Microscopy

Wang, Yulin 14 December 2013 (has links)
The study of the structure-activity relationship of electrode surfaces is fundamentally important in electrocatalysis research. Yet, the methods and techniques used for the examination of structure-activity relationship so far are limited by their capabilities, and the exploration of electrochemistry at complex surfaces is very challenging. In this study, the correlation between the electrode surface structure and its corresponding activity in two electrochemical reactions were investigated: an electrochemical etching reaction and an electrocatalysis reaction. A polycrystalline Pt electrode was galvanically etched to expose the underlying well-defined crystallites serving as pseudo-single-crystal electrodes. Atomic force microscopy (AFM) complemented with electron backscatter diffraction (EBSD) was employed for the elucidation of the effects of electrode surface structure on its etching rate. Electrochemical measurements of the electrocatalytic activity of the hydrogen oxidation reaction on individual grain surfaces were performed with high spatial resolution scanning electrochemical microscopy (SECM) coupled with electron backscatter diffraction (EBSD). The etching experiment and surface characterization results show the more deeply etched regions on polycrystalline Pt surface correspond to Pt(100). The etching rate of the Pt catalyst is Pt(111), Pt(100), and Pt(110) in increasing order. The structure-reactivity relationship showed that the catalytic activity for hydrogen oxidation reaction (HOR) increases in the order Pt(100) < Pt(110) < Pt(111), where the Miller index plane represents the terrace orientation of the high-index facets. A clear correlation is observed between the increase in HOR activity and step sites density on a given base orientation. Quantitative kinetic measurements at crystal domains were made from current-potential plots and SECM approach curves.

Page generated in 0.0618 seconds