Spelling suggestions: "subject:"highorder methods"" "subject:"higherorder methods""
1 |
Effect of Small Steps on the Receptivity and Transition in High Speed Boundary LayerYassir, Sofia 09 December 2016 (has links)
The research on transition in supersonic and hypersonic boundary layers has been reinvigorated in the last decades because of the increased interest in high-speed flight. The receptivity to environmental disturbances of high-speed boundary layers developing over flat plates or curved surfaces is a very important problem because the transition process is directly impacted by it. The main objective of the research is to determine the effect of small steps on laminar high-speed boundary-layers that are excited by freestream disturbances in the form of vorticity and acoustic waves. Both supesonic and hypersonic regimes are analyzed using a high-order compressible Navier-Stokes numerical algorithm. It is found that both the backward and the forward steps are capable of stabilizing the disturbances that propagate inside the boundary layer. This will potentially delay the formation of three-dimensional disturbances that are precursors to transition into turbulence.
|
2 |
Estruturas de dados topológicas aplicadas em simulações de escoamentos compressíveis utilizando volumes finitos e métodos de alta ordem / Topologic data structures applied on compressible flows simulations using finite volume and high-order methodsBarbosa, Fernanda Paula 18 December 2012 (has links)
A representação de malhas por meio de estrutura de dados e operadores topológicos e um dos focos principais da modelagem geométrica, onde permite uma implementação robusta e eficiente de mecanismos de refinamento adaptativo, alinhamento de células e acesso as relações de incidência e adjacência entre os elementos da malha, o que é de grande importância na maioria das aplicações em mecânica dos fluidos. No caso de malhas não estruturadas, a não uniformidade da decomposição celular e melhor representada por uma estrategia mais sofisticada, que são as estruturas de dados topológicas. As estruturas de dados topológicas indexam elementos de uma malha representando relações de incidência e adjacência entre elementos, garantindo acesso rápido às informações. Um dos aspectos mais comuns aos problemas tratados pela mecânica dos fluidos computacional é a complexidade da geometria do domínio onde ocorre o escoamento. O uso de estruturas de dados para manipular malhas computacionais e de grande importância pois realiza de modo eficiente as consultas às informações da malha e centraliza todas as operações sobre a malha em um único módulo, possibilitando sua extensão e adaptação em diversas situações. Este trabalho visou explorar o acoplamento de uma estrutura de dados topológica, a Mate Face, em um módulo simulador existente, de modo a gerenciar todos os acessos à malha e dispor operações e iteradores para pesquisas complexas nas vizinhanças de cada elemento na malha. O módulo simulador resolve as equações governantes da mecânica dos fluidos através da técnica de volumes finitos. Foi utilizada uma formulação que atribui os valores das propriedades aos centroides dos volumes de controle, utiliza métodos de alta ordem, os esquemas ENO e WENO, que tem a finalidade de capturar com eficiência descontinuidades presentes em problemas governados por equações diferenciais parciais hiperbólicas. As equações de Euler em duas dimensões representam os escoamentos de interesse no presente trabalho. O acoplamento da estrutura de dados Mate Face ao simulador foi realizada através da criação de uma biblioteca desenvolvida que atua como uma interface de comunicação entre os dois módulos, a estrutura de dados e o simulador, que foram implementados em diferentes linguagens de programação. Deste modo, todas as funcionalidades existentes na Mate Face tornaram-se acessíveis ao simulador na forma de procedimentos. Um estudo sobre malhas dinâmicas foi realizado envolvendo o método das molas para movimentação de malhas simulando-se operações de arfagem. A idéia foi verificar a aplicabilidade deste método para auxiliar simulações de escoamentos não estacionarios. Uma outra vertente do trabalho foi estender a estrutura Mate Face de forma a representar elementos não suportados a priori, de modo a flexibilizar o seu uso em simulações de escoamentos baseados no método de volumes finitos espectrais. O método dos volumes espectrais e utilizado para se obter alta resolução espacial do domínio computacional, que também atribui valores das propriedades aos centroides dos volumes de controle, porém, os volumes de controle são particionados em volumes menores de variadas topologias. Assim, uma extensão da Mate Face foi desenvolvida para representar a nova malha para a aplicação do método, representando-se cada particionamento localmente em cada volume espectral. Para todas as etapas deste trabalho, realizaram-se experimentos que validaram a utilizaação da estrutura de dados Mate Face junto a métodos numéricos. Desta forma, a estrutura pode auxiliar as ferramentas de simulações de escoamentos de fluidos no gerenciamento e acesso à malha computacional / The storage and access of grid files by data structures and topologic operators is one of the most important goals of geometric modeling research field, which allows an efficient and stable implementation of adaptive refinement mechanisms, cells alignment and access to incidence and adjacency properties from grid elements, representing great concernment in the majority of applications from fluid mechanics. In the case of non-structured grids, the cellular decomposition if non-uniform and is better suited by a more sophisticated strategy - the topologic data structs. The topologic data structs index grid elements representing incidence and adjacency properties from grid elements, ensuring quick access to information. One of most common aspects from problems solved by computational fluid mechanic is the complexity of the domain geometry where the fluid ows. The usage of data structures to manipulate computational grids is of great importance because it performs efficiently queries on grid information and centers all operations to the grid on a unique module, allowing its extension and flexible usage on many problems. This work aims at exploring the coupling of a topologic data structure, the Mate Face, on a solver module, by controlling all grid access providing operators and iterators that perform complex neighbor queries at each grid element. The solver module solves the governing equations from fluid mechanics though the finite volume technique with a formulation that sets the property values to the control volume centroids, using high order methods - the ENO and WENO schemes, which have the purpose of efficiently capture the discontinuities appearing in problems governed by hyperbolic conservation laws. The two dimensional Euler equations are considered to represent the flows of interest. The coupling of the Mate Face data structure to the solver module was achieved by a creation of a library that acts as an interface layer between both modules, the Mate Face and the solver, which had been implemented using different programming languages. Therefore, all Mate Face class methods are available to the solver module though the interface library in the form of procedures. A study of dynamic grids was made by using spring methods for the moving grid under pitch movement case. The goal was to analyze the applicability of such method to aid non stationary simulations. Another contribution of this work was to show how the Mate Face can be extended in order to deal with non-supported types of elements, allowing it to aid numeric simulations using the spectral finite volume method. The spectral nite volume method is used to obtain high spatial resolution, also by setting the property values to the control volume centroids, but here the control volumes are partitioned into smaller volumes of different types, from triangles to hexagons. Then, an extension of the Mate Face was developed in order to hold the new generated grid by the partitioning specfied by the spectral finite volume method. The extension of Mate Face represents all partitioned elements locally for each original control volume. For all implementations and proposals from this work, experiments were performed to validate the usage of the Mate Face along with numeric methods. Finally, the data structure can aid the fluid flow simulation tools by managing the grid file and providing efficient query operators
|
3 |
High-Order Sparsity Exploiting Methods with Applications in Imaging and PDEsJanuary 2016 (has links)
abstract: High-order methods are known for their accuracy and computational performance when applied to solving partial differential equations and have widespread use
in representing images compactly. Nonetheless, high-order methods have difficulty representing functions containing discontinuities or functions having slow spectral decay in the chosen basis. Certain sensing techniques such as MRI and SAR provide data in terms of Fourier coefficients, and thus prescribe a natural high-order basis. The field of compressed sensing has introduced a set of techniques based on $\ell^1$ regularization that promote sparsity and facilitate working with functions having discontinuities. In this dissertation, high-order methods and $\ell^1$ regularization are used to address three problems: reconstructing piecewise smooth functions from sparse and and noisy Fourier data, recovering edge locations in piecewise smooth functions from sparse and noisy Fourier data, and reducing time-stepping constraints when numerically solving certain time-dependent hyperbolic partial differential equations. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2016
|
4 |
Estruturas de dados topológicas aplicadas em simulações de escoamentos compressíveis utilizando volumes finitos e métodos de alta ordem / Topologic data structures applied on compressible flows simulations using finite volume and high-order methodsFernanda Paula Barbosa 18 December 2012 (has links)
A representação de malhas por meio de estrutura de dados e operadores topológicos e um dos focos principais da modelagem geométrica, onde permite uma implementação robusta e eficiente de mecanismos de refinamento adaptativo, alinhamento de células e acesso as relações de incidência e adjacência entre os elementos da malha, o que é de grande importância na maioria das aplicações em mecânica dos fluidos. No caso de malhas não estruturadas, a não uniformidade da decomposição celular e melhor representada por uma estrategia mais sofisticada, que são as estruturas de dados topológicas. As estruturas de dados topológicas indexam elementos de uma malha representando relações de incidência e adjacência entre elementos, garantindo acesso rápido às informações. Um dos aspectos mais comuns aos problemas tratados pela mecânica dos fluidos computacional é a complexidade da geometria do domínio onde ocorre o escoamento. O uso de estruturas de dados para manipular malhas computacionais e de grande importância pois realiza de modo eficiente as consultas às informações da malha e centraliza todas as operações sobre a malha em um único módulo, possibilitando sua extensão e adaptação em diversas situações. Este trabalho visou explorar o acoplamento de uma estrutura de dados topológica, a Mate Face, em um módulo simulador existente, de modo a gerenciar todos os acessos à malha e dispor operações e iteradores para pesquisas complexas nas vizinhanças de cada elemento na malha. O módulo simulador resolve as equações governantes da mecânica dos fluidos através da técnica de volumes finitos. Foi utilizada uma formulação que atribui os valores das propriedades aos centroides dos volumes de controle, utiliza métodos de alta ordem, os esquemas ENO e WENO, que tem a finalidade de capturar com eficiência descontinuidades presentes em problemas governados por equações diferenciais parciais hiperbólicas. As equações de Euler em duas dimensões representam os escoamentos de interesse no presente trabalho. O acoplamento da estrutura de dados Mate Face ao simulador foi realizada através da criação de uma biblioteca desenvolvida que atua como uma interface de comunicação entre os dois módulos, a estrutura de dados e o simulador, que foram implementados em diferentes linguagens de programação. Deste modo, todas as funcionalidades existentes na Mate Face tornaram-se acessíveis ao simulador na forma de procedimentos. Um estudo sobre malhas dinâmicas foi realizado envolvendo o método das molas para movimentação de malhas simulando-se operações de arfagem. A idéia foi verificar a aplicabilidade deste método para auxiliar simulações de escoamentos não estacionarios. Uma outra vertente do trabalho foi estender a estrutura Mate Face de forma a representar elementos não suportados a priori, de modo a flexibilizar o seu uso em simulações de escoamentos baseados no método de volumes finitos espectrais. O método dos volumes espectrais e utilizado para se obter alta resolução espacial do domínio computacional, que também atribui valores das propriedades aos centroides dos volumes de controle, porém, os volumes de controle são particionados em volumes menores de variadas topologias. Assim, uma extensão da Mate Face foi desenvolvida para representar a nova malha para a aplicação do método, representando-se cada particionamento localmente em cada volume espectral. Para todas as etapas deste trabalho, realizaram-se experimentos que validaram a utilizaação da estrutura de dados Mate Face junto a métodos numéricos. Desta forma, a estrutura pode auxiliar as ferramentas de simulações de escoamentos de fluidos no gerenciamento e acesso à malha computacional / The storage and access of grid files by data structures and topologic operators is one of the most important goals of geometric modeling research field, which allows an efficient and stable implementation of adaptive refinement mechanisms, cells alignment and access to incidence and adjacency properties from grid elements, representing great concernment in the majority of applications from fluid mechanics. In the case of non-structured grids, the cellular decomposition if non-uniform and is better suited by a more sophisticated strategy - the topologic data structs. The topologic data structs index grid elements representing incidence and adjacency properties from grid elements, ensuring quick access to information. One of most common aspects from problems solved by computational fluid mechanic is the complexity of the domain geometry where the fluid ows. The usage of data structures to manipulate computational grids is of great importance because it performs efficiently queries on grid information and centers all operations to the grid on a unique module, allowing its extension and flexible usage on many problems. This work aims at exploring the coupling of a topologic data structure, the Mate Face, on a solver module, by controlling all grid access providing operators and iterators that perform complex neighbor queries at each grid element. The solver module solves the governing equations from fluid mechanics though the finite volume technique with a formulation that sets the property values to the control volume centroids, using high order methods - the ENO and WENO schemes, which have the purpose of efficiently capture the discontinuities appearing in problems governed by hyperbolic conservation laws. The two dimensional Euler equations are considered to represent the flows of interest. The coupling of the Mate Face data structure to the solver module was achieved by a creation of a library that acts as an interface layer between both modules, the Mate Face and the solver, which had been implemented using different programming languages. Therefore, all Mate Face class methods are available to the solver module though the interface library in the form of procedures. A study of dynamic grids was made by using spring methods for the moving grid under pitch movement case. The goal was to analyze the applicability of such method to aid non stationary simulations. Another contribution of this work was to show how the Mate Face can be extended in order to deal with non-supported types of elements, allowing it to aid numeric simulations using the spectral finite volume method. The spectral nite volume method is used to obtain high spatial resolution, also by setting the property values to the control volume centroids, but here the control volumes are partitioned into smaller volumes of different types, from triangles to hexagons. Then, an extension of the Mate Face was developed in order to hold the new generated grid by the partitioning specfied by the spectral finite volume method. The extension of Mate Face represents all partitioned elements locally for each original control volume. For all implementations and proposals from this work, experiments were performed to validate the usage of the Mate Face along with numeric methods. Finally, the data structure can aid the fluid flow simulation tools by managing the grid file and providing efficient query operators
|
5 |
HIGH ACCURACY METHODS FOR BOLTZMANN EQUATION AND RELATED KINETIC MODELSShashank Jaiswal (10686426) 06 May 2021 (has links)
<div>The Boltzmann equation, an integro-differential equation for the molecular distribution function in the physical and velocity phase space, governs the fluid flow behavior at a wide range of physical conditions, including compressible, turbulent, as well as flows involving further physics such as non-equilibrium internal energy exchange and chemical reactions. Despite its wide applicability, deterministic solutions of the Boltzmann equation present a huge computational challenge, and often the collision operator is simplified for practical reasons, hereby, referred to as linear kinetic models. These models utilize the moment of the underlying probability distribution to mimic some properties of the original collision operator. But, just because we know the moments of a distribution, doesn't mean we know the actual distribution. The approximation of reality can never supersede the reality itself. Because, all the facts (moments) about the world (distribution) cannot explain the world. The premise lies not in the fact that a certain flow behavior can be correctly predicted; but rather that the Boltzmann equation can reveal and explain previously unsuspected aspects of reality.</div><div><br></div><div>Therefore, in this work, we introduce accurate, efficient, and robust numerical schemes for solving the multi-species Boltzmann equation which can model general repulsive interactions. These schemes are high order spatially and temporally accurate, spectrally accurate in molecular velocity space, exhibit nearly linear parallel efficiency on the current generation of processors; and can model a wide-range of rarefied flows including flows involving momentum, heat, and diffusive transport. The single-species variant formed the basis of author's Masters' thesis.</div><div><br></div><div>While the first part of the dissertation is targeted towards multi-species flows that exhibit rich non-equilibrium phenomenon; the second part focuses on single-species flows that do not depart significantly from equilibrium. This is the case, for example, in micro-nozzles, where a portion of flow can be highly rarefied, whereas others can be in near-continuum regime. However, when the flow is in near-continuum regime, the traditional deterministic numerical schemes for kinetic equations encounter two difficulties: a) since the near-continuum is essentially an effect of large number of particles in an infinitesimal volume, the average time between successive collisions decrease, and therefore the discrete simulation timestep has to be made smaller; b) since the number of molecular collisions increase, the flow acquires steady state slowly, and therefore one needs to carry out time integration for large number of time steps. Numerically, the underlying issue stems from stiffness of the discretized ordinary differential equation system. This situation is analogous to low Reynolds number scenario in traditional compressible Navier-Stokes simulations. To circumvent these issues, we introduce a class of high order spatially and temporally accurate implicit-explicit schemes for single-species Boltzmann equation and related kinetic models with the following properties: a) since the Navier-Stokes can be derived from the asymptotics of the Boltzmann equation (using Chapman-Enskog expansion~\cite{cercignani2000rarefied}) in the limit of vanishing rarefaction, these schemes preserve the transition from Boltzmann to Navier-Stokes; b) the timestep is independent of the rarefaction and therefore the scheme can handle both rarefied and near-continuum flows or combinations thereof; c) these schemes do not require iterations and therefore are easy to scale to large problem sizes beyond thousands of processors (because parallel efficiency of Krylov space iterative solvers deteriorate rapidly with increase in processor count); d) with use of high order multi-stage time-splitting, the time integration over sufficiently long number of timesteps can be carried out more accurately. The extension of the present methodology to the multi-species case can be considered in the future. </div><div><br></div><div>A series of numerical tests are performed to illustrate the efficiency and accuracy of the proposed methods. Various benchmarks highlighting different scattering models, different mass ratios, momentum transport, heat transfer, and diffusive transport have been studied. The results are directly compared with the direct simulation Monte Carlo (DSMC) method. As an engineering use-case, the developed methodology is applied for the study of thermal processes in micro-systems, such as heat transfer in electronic-chips; and primarily, the ingeniously Purdue-developed, Microscale In-Plane Knudsen Radiometric Actuator (MIKRA) sensor, which can be used for flow actuation and measurement.</div>
|
6 |
A Discontinuous Galerkin Method for Turbomachinery and Acoustics ApplicationsWukie, Nathan A. January 2018 (has links)
No description available.
|
7 |
A Discontinuous Galerkin Chimera Overset SolverGalbraith, Marshall C. January 2013 (has links)
No description available.
|
8 |
The Principle of Coordinate Invariance and the Modelling of Curved Material Interfaces in Finite-difference Discretisations of Maxwell's Equations / The Principle of Coordinate Invariance and the Modelling of Curved Material Interfaces in Finite-difference Discretisations of Maxwell's EquationsArmenta Barrera, Roberto 06 December 2012 (has links)
The principle of coordinate invariance states that all physical laws must be formulated in a mathematical form that is independent of the geometrical properties of any particular coordinate system. Embracing this principle is the key to understand how to systematically incorporate curved material interfaces into a numerical solution of Maxwell’s equations. This dissertation describes how to generate a coordinate invariant representation of Maxwell’s equations in differential form, and it demonstrates why employing such representation is crucial to the development of robust finite-difference discretisations with consistent global error properties. As part of this process, two original contributions are presented that address the issue of constructing finite-difference approximations at the locations of material interfaces. The first contribution is a domain-decomposition procedure to enforce the tangential field continuity conditions with a second-order local truncation error that can be applied in 2-D or 3-D. The second contribution is a similar domain-decomposition procedure that enforces the tangential field continuity conditions with a local truncation of order 2L—where L is an integer greater or equal to one—but that can only be applied in 1-D. To conclude, the dissertation also describes the interesting connection that exists between the use of a coordinate invariant representation of Maxwell’s equations to design artificial materials and the use of the same representation to model curved material interfaces in a finite-difference discretisation.
|
9 |
The Principle of Coordinate Invariance and the Modelling of Curved Material Interfaces in Finite-difference Discretisations of Maxwell's Equations / The Principle of Coordinate Invariance and the Modelling of Curved Material Interfaces in Finite-difference Discretisations of Maxwell's EquationsArmenta Barrera, Roberto 06 December 2012 (has links)
The principle of coordinate invariance states that all physical laws must be formulated in a mathematical form that is independent of the geometrical properties of any particular coordinate system. Embracing this principle is the key to understand how to systematically incorporate curved material interfaces into a numerical solution of Maxwell’s equations. This dissertation describes how to generate a coordinate invariant representation of Maxwell’s equations in differential form, and it demonstrates why employing such representation is crucial to the development of robust finite-difference discretisations with consistent global error properties. As part of this process, two original contributions are presented that address the issue of constructing finite-difference approximations at the locations of material interfaces. The first contribution is a domain-decomposition procedure to enforce the tangential field continuity conditions with a second-order local truncation error that can be applied in 2-D or 3-D. The second contribution is a similar domain-decomposition procedure that enforces the tangential field continuity conditions with a local truncation of order 2L—where L is an integer greater or equal to one—but that can only be applied in 1-D. To conclude, the dissertation also describes the interesting connection that exists between the use of a coordinate invariant representation of Maxwell’s equations to design artificial materials and the use of the same representation to model curved material interfaces in a finite-difference discretisation.
|
10 |
High-order discontinuous Galerkin methods for incompressible flowsVillardi de Montlaur, Adeline de 22 September 2009 (has links)
Aquesta tesi doctoral proposa formulacions de Galerkin discontinu (DG) d'alt ordre per fluxos viscosos incompressibles. Es desenvolupa un nou mètode de DG amb penalti interior (IPM-DG), que condueix a una forma feble simètrica i coerciva pel terme de difusió, i que permet assolir una aproximació espacial d'alt ordre. Aquest mètode s'aplica per resoldre les equacions de Stokes i Navier-Stokes. L'espai d'aproximació de la velocitat es descompon dins de cada element en una part solenoidal i una altra irrotacional, de manera que es pot dividir la forma dèbil IPM-DG en dos problemes desacoblats. El primer permet el càlcul de les velocitats i de les pressions híbrides, mentre que el segon calcula les pressions en l'interior dels elements. Aquest desacoblament permet una reducció important del número de graus de llibertat tant per velocitat com per pressió. S'introdueix també un paràmetre extra de penalti resultant en una formulació DG alternativa per calcular les velocitats solenoidales, on les pressions no apareixen. Les pressions es poden calcular com un post-procés de la solució de les velocitats. Es contemplen altres formulacions DG, com per exemple el mètode Compact Discontinuous Galerkin, i es comparen al mètode IPM-DG. Es proposen mètodes implícits de Runge-Kutta d'alt ordre per problemes transitoris incompressibles, permetent obtenir esquemes incondicionalment estables i amb alt ordre de precisió temporal. Les equacions de Navier-Stokes incompressibles transitòries s'interpreten com un sistema de Equacions Algebraiques Diferencials, és a dir, un sistema d'equacions diferencials ordinàries corresponent a la equació de conservació del moment, més les restriccions algebraiques corresponent a la condició d'incompressibilitat. Mitjançant exemples numèrics es mostra l'aplicabilitat de les metodologies proposades i es comparen la seva eficiència i precisió. / This PhD thesis proposes divergence-free Discontinuous Galerkin formulations providing high orders of accuracy for incompressible viscous flows. A new Interior Penalty Discontinuous Galerkin (IPM-DG) formulation is developed, leading to a symmetric and coercive bilinear weak form for the diffusion term, and achieving high-order spatial approximations. It is applied to the solution of the Stokes and Navier-Stokes equations. The velocity approximation space is decomposed in every element into a solenoidal part and an irrotational part. This allows to split the IPM weak form in two uncoupled problems. The first one solves for velocity and hybrid pressure, and the second one allows the evaluation of pressures in the interior of the elements. This results in an important reduction of the total number of degrees of freedom for both velocity and pressure. The introduction of an extra penalty parameter leads to an alternative DG formulation for the computation of solenoidal velocities with no presence of pressure terms. Pressure can then be computed as a post-process of the velocity solution. Other DG formulations, such as the Compact Discontinuous Galerkin method, are contemplated and compared to IPM-DG. High-order Implicit Runge-Kutta methods are then proposed to solve transient incompressible problems, allowing to obtain unconditionally stable schemes with high orders of accuracy in time. For this purpose, the unsteady incompressible Navier-Stokes equations are interpreted as a system of Differential Algebraic Equations, that is, a system of ordinary differential equations corresponding to the conservation of momentum equation, plus algebraic constraints corresponding to the incompressibility condition. Numerical examples demonstrate the applicability of the proposed methodologies and compare their efficiency and accuracy.
|
Page generated in 0.0423 seconds