• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet

Laskowski, Andrew K., Kapp, Paul, Ding, Lin, Campbell, Clay, Liu, XiaoHui 01 1900 (has links)
The Lopu Range, located similar to 600km west of Lhasa, exposes a continental high-pressure metamorphic complex beneath India-Asia (Yarlung) suture zone assemblages. Geologic mapping, 14 detrital U-Pb zircon (n=1895 ages), 11 igneous U-Pb zircon, and nine zircon (U-Th)/He samples reveal the structure, age, provenance, and time-temperature histories of Lopu Range rocks. A hornblende-plagioclase-epidote paragneiss block in ophiolitic melange, deposited during Middle Jurassic time, records Late Jurassic or Early Cretaceous subduction initiation followed by Early Cretaceous fore-arc extension. A depositional contact between fore-arc strata (maximum depositional age 971Ma) and ophiolitic melange indicates that the ophiolites were in a suprasubduction zone position prior to Late Cretaceous time. Five Gangdese arc granitoids that intrude subduction-accretion melange yield U-Pb ages between 49 and 37Ma, recording Eocene southward trench migration after collision initiation. The south dipping Great Counter Thrust system cuts older suture zone structures, placing fore-arc strata on the Kailas Formation, and sedimentary-matrix melange on fore-arc strata during early Miocene time. The north-south, range-bounding Lopukangri and Rujiao faults comprise a horst that cuts the Great Counter Thrust system, recording the early Miocene (similar to 16Ma) transition from north-south contraction to orogen-parallel (E-W) extension. Five early Miocene (17-15Ma) U-Pb ages from leucogranite dikes and plutons record crustal melting during extension onset. Seven zircon (U-Th)/He ages from the horst block record 12-6Ma tectonic exhumation. JurassicEocene Yarlung suture zone tectonics, characterized by alternating episodes of contraction and extension, can be explained by cycles of slab rollback, breakoff, and shallow underthrustingsuggesting that subduction dynamics controlled deformation.
2

Zachování HP minerálů a textur ve světlých a mafických granulitech Rychlebských hor / Preservation of HP minerals and textures in felsic and mafic granulites from the Rychleby Mts.

Schlöglová, Kateřina January 2011 (has links)
Diploma thesis - Kateřina Schlöglová - 2011 1/2 English abstract Granulites of the Rychleby Mts. represent relics of high-pressure eclogite-facies metamorphic rocks that are scattered in various crustal and mantle segments of the Variscan orogen in central Europe. These rocks may provide important insights into early stages of Variscan plate convergence and burial as well as exhumation mechanisms. We use mineral assemblages and chemistry to reconstruct the pressure-temperature paths, mechanisms of melting, and conditions of mineral preservation of high-pressure granulites, as well as whole- rock geochemistry to aid in interpretation of granulite precursors and their geodynamic setting. The mafic granulites consist of garnet, omphacite, two feldspars, and quartz with accessory rutile and zircon. The peak assemblage was partly replaced by pargasitic amphibole and biotite. Garnet grains are zoned from Grs36Py10Alm54 (core) to Grs20Py38Alm42 (rim), and host inclusions of phengite, omphacite, unmixed feldspars, kyanite, and rutile. Omphacite composition varies from Di44Hd14Jd42 (inclusions in garnet) through Di63Hd20Jd17 (porphyroblasts) and Di63Hd24Jd13 (symplectitic intergrowths with plagioclase). Reintegrated composition of the feldspar porphyroblasts is Or43Ab53An04. The felsic granulite variety is composed...
3

Lejarfjället Garnet(?) Peridotite – Origin and Petrological Characterization of Symplectitic Aggregates in Ultramafic Rocks / Lejarfjället granat(?) peridotit – ursprung och petrologisk karakterisering av aggregat i ultramafiska bergarter

Eriksson, Felicia January 2022 (has links)
Ultramafic rocks are abundant in the Earth’s mantle but rare on the surface. Since no in-situ samples from the mantle can be collected, mantle rocks provide knowledge of mechanisms operating in the mantle and large-scale processes that brought them up to the surface. The mantle is considered chemically homogeneous and is dominated by the ultramafic, olivine-dominated rock - peridotite. Peridotites consist of olivine, clinopyroxene, orthopyroxene, and an Al-bearing phase. Increasing PT conditions alter the Al-bearing phase in peridotites, from plagioclase, through spinel to garnet. The Caledonian Orogeny occurred during the Ordovician to the Devonian period after the collision of the paleocontinents Laurentia and Baltica and shaped what is now the Scandinavian Caledonides. During the orogeny, a large scale of orogenic peridotites was tectonically emplaced on the surface. Scandinavian Caledonides are divided into Allochthons and further subdivided into Nappe Complexes. The Seve Nappe Complex (SNC) in the Middle Allochthon is interpreted as a record of Baltica’s outermost margin and exhibits evidence of ultramafic rocks that have gone under high- and ultra-high-grade metamorphism. From a locality in the SNC, near Lejarfjället, Ankarede in Jämtland, samples of an ultramafic rock were collected during field studies. To analyze the minerals’ chemical composition and thereby distinguish the petrographic properties of the rock, the samples were cut into thin sections. This study aims to characterize the aggregates occurring within the Lejarfjället peridotite and establish their possible origins. Thin sections of 30 μm thickness were analyzed in an optical petrographic microscope under plane-polarized light and cross-polarized light. Thin sections of 120 μm were analyzed with electron microprobe analysis. Through analysis, the rock type was identified to be the ultramafic rock peridotite, and more specific dunite, consisting of the mineral olivine, spinel, amphibole, serpentine, chlorite, and orthopyroxene. Further analyses of chemical composition allowed full identification of end members of olivine, orthopyroxene, and spinel. Obtained data indicate that the rock is an orogenic peridotite, and has previously been garnet-bearing, formed at a high pressure of at least 15 kilobars. The remnant of garnet is present as kelyphites, with pressure shadows surrounding the reaction corona and the garnet has been completely replaced with spinel and amphibole which constitutes the groundmass of the aggregates. Visible brittle deformation of the rock indicates that the rock was possibly exposed to seismic activity. The amphibole and chlorite indicate fluid interaction with the rock, pointing to the fact that some sort of metasomatic event has occurred. Serpentine present in the rock indicates hydrothermal reaction at low pressure and temperature conditions while the rock went through exhumation. The rock is interpreted to originate from exhumation in a lithosphere-scale extensional shear zone, similarly to examples described in the literature. / Ultramafiska bergarter dominerar jordens mantel men är sällsynta på ytan. Manteln är kemiskt homogen och domineras av den ultramafiska bergarten peridotit. Peridotiter består av mineralen olivin, klinopyroxen, ortopyroxen samt en aluminium bärande fas. Ökade tryck- och temperaturförhållanden ändrar den aluminium-bärande fasen i peridotit, från plagioklas till spinel till granat. Eftersom det inte går att ta ett bergprov direkt från manteln, ger stuffer av ultramafiska bergarter kunskap om både mekanismer i manteln och vilka storskaliga tektoniska event som tog dem upp till ytan. Den kaledoniska orogenesen inträffade mellan Ordovicium till Devon efter kollisionen av paleokontinenterna Laurentia och Baltica, och formade det som nu är de skandinaviska kaledoniderna. Under orogenesen pressades peridotiter upp från manteln, och är därmed utbredda längs den svenska fjällkedjan. De skandinaviska kaledoniderna är uppdelade i alloktoner och vidare i skollkomplex. Seveskollkomplexet i den mellersta alloktonen visar på ultramafiska bergarter som har utsatts för hög- och ultrahöggrads metamorfos. Ett ultramafiskt bergprov togs från Seveskollan vid Lejarfjället, Ankarede i Jämtland, under fältstudier. Syftet med denna studie är att identifiera aggregat i en peridotit från Lejarfjället och att försöka identifiera dess ursprung. För att analysera bergartens kemiska komposition och därmed urskilja de petrografiska egenskaperna gjordes tunnslip av provet. Tunnslip på 30 μm analyserades i ett optiskt petrografiskt mikroskop under plan polariserat och kors polariserat ljus. Tunnslip på 120 μm analyserades med hjälp av elektronmikrosond analys. Genom analys kunde bergarten identifieras att vara den ultramafiska bergarten peridotit, och mer specifikt en dunit. Provet består av mineralen olivin, serpentin, amfibol, spinel, orthopyroxen, och klorit. Vidare analys av kemisk komposition möjliggjorde fullständig identifikation av subgrupper av olivin, orthopyroxen, och spinel. Analys av data indikerar att bergarten är en orogen peridotit som tidigare varit granat-bärande, och har därmed formats vid minst 15 kilobar tryck. Granat saknas helt i bergarten men den typiska isometriska formen av kristallerna är intakta med tryckskuggor runtom. Avsaknaden av granat gör att kristallerna är kelyfiter av granat med en grundmassa bestående av spinel och amfibol. Synlig spröd deformation av bergartsprovet indikerar att stenen vid någon tidpunkt utsattes för seismisk aktivitet. Amfibol och klorit indikerar att en fluid har reagerat med stenen och orsakat metasomatism. Serpentin visar på hydrotermal reaktion vid låga tryck- och temperaturförhållanden på vägen upp från manteln. Deformationen av peridotiten tyder på att den formades i en litosfärisk skjuvningszon i jämförelse med liknande exempel beskrivna i litteraturen.
4

Metamorphic Evolution of the Tjeliken Garnet-Phengite Gneiss, Northern Jämtland, Swedish Caledonides / Den metamorfa utvecklingen av Tjelikensgranat- och fengitförande gnejs, norra Jämtland, svenska Kaledoniderna

Andersson, Barbro January 2016 (has links)
The Tjeliken Mountain in northern Jämtland, central Scandinavian Caledonides is by most authors considered to belong to the Lower Seve Nappe Complex (SNC). However, recently P-T conditions similar to the Middle Seve have been constrained for the eclogite at the top of the mountain, revitalizing the tectonic debate about Tjeliken. Also the timing of high-pressure metamorphism is debated. Two earlier studies of the eclogite yield ages between 464 Ma and 446 Ma. This study focuses on the garnet-phengite gneiss hosting the eclogite. By construction of P-T conditions and dating the two discrepancies above are investigated. U/Pb zircon dating by secondary ion mass spectrometry technique (SIMS) targeted on metamorphic rims yield a concordia age of 460.2 ± 2.7 Ma corresponding well to earlier c. 463.7 ± 8.9 Ma Sm/Nd dating of the eclogite. The inferred peak mineral assemblage of the gneiss is garnet + phengite + quartz + K-feldspar + titanite ± H2O. Thermodynamic modelling reveal that garnet cores equilibrated within 1.9 - 2.6 GPa and 600 - 700 oC. Fe2+-Mg garnet-phengite thermometry involving garnet rims yields temperatures of c. 650 - 715 oC revealing relatively similar temperatures during growth of garnet core and rim, respectively. Garnet chemistry is characterised by oscillatory zoning with an antithetic pattern of Ca and Fe. The former decreases from core to rim, whereas the latter increases. The opposite trend is observed in epidote-group minerals suggesting exchange between the two minerals during garnet growth. Skeletal textures and atoll textures together with observed chemical pattern may indicate multiple garnet growth episodes. The results of the study points toward similar P-T history of the Tjeliken eclogite and gneiss in favour of the interpretation of considering the whole Tjeliken to belong to the Lower Seve. The obtained U/Pb age support other age constraints in the area suggesting high-pressure metamorphism at c. 460 Ma related to a subduction event affecting the central Scandinavian Caledonides at c. 460 - 450 Ma. / Den skandinaviska fjällkedjan, vetenskapligt benämnd de skandinaviska Kaledoniderna, har bildats på samma sätt som Himalaya och har därför liknande uppbyggnad. Från början tros fjällen ha varit av samma storlek som Himalayas berg. Deras ålder på cirka 400 miljoner år gör dock att miljontals års påverkan från vatten och vind har eroderat ner dem till dagens betydligt lägre fjäll. Den bergsyta vi ser idag utgör därför vad som från början var fjällkedjans kärna. Därför utgör de skandinaviska Kaledoniderna en unik möjlighet att studera en bergskedjas inre, vilket kan ge viktig information om bergkedjebildande processer.Forskning har visat att fjällkedjan bildades då Japetushavet mellan kontinenterna Baltika och Laurentia stängdes. Detta resulterade till slut i en kollision mellan de två kontinenterna där stora flak (skollor) av mellanliggande havsbotten och kontinentalskorpa transporterades hundratals kilometer upp på Baltika. Skollorna utgör idag våra fjäll. Känt är också att innan kontinentalkollisionen så kolliderade Baltika med öar i havet, varvid dess kontinentalkant pressades djupt ner under jordskorpan, ända ner i manteln. Bevis för detta återfinns idag i Sevesskollan ibland annat de jämtländska fjällen i form av högtrycksbergarter. Dessa har bildats under de höga tryck och temperaturer som råder på stora djup i jordens inre. Genom att studera högtrycksbergarter kan man förstå fjällkedjans bildande. Fjället Tjeliken i norra Jämtland är en av de idag kända fyndplatserna av högtrycksbergarter. Dess topp består av bergarten eklogit och dess lägre delar av gnejs, samt kvarts. Tidigare studier av eklogiten visar att den har bildats vid tryck och temperatur på cirka 2.6 GPa och 700 °C, vilket motsvarar att den varit nedpressad cirka 80 km under jordytan. Den exakta tidpunkten då detta skedde har inte kunnat fastställas då olika dateringsmetoder gett olika resultat mellan cirka 464 till 446 miljoner år sedan. I denna studie studeras tryck- och temperaturförhållanden för gnejsen som jämförelse till eklogiten, för att kunna fastställa om de båda bergarterna har genomgått samma bildningsprocesser. En ny datering genomförs också för att bättre kunna fastställa tidpunkten för högtrycksfasen.Datering baserat på radioaktivt sönderfall av uran till bly i mineralet zirkon visar att högtrycksfasen inträffade för cirka 460 miljoner år sedan. Modellering baserat på termodynamiska principer visar att kärnorna i mineralet granat bildades inom tryck- och temperaturområdet 1.9–2.6 GPa och c. 680-700 °C. En komplex kemisk zonering av granaterna indikerar att de möjligen bildades under flera tillväxtfaser, vilka inom ramen för denna studie inte kunnat modelleras, då mer avancerade metoder krävs. Denna studie visar dock att eklogiten och gnejsen sannolikt delar en gemensam tryck- och temperaturhistoria, vilken är relaterad till den djupa nedpressningen av Baltikas kontinentalkant under sen ordovicium. Dateringen stödjer även övriga åldersdateringar i området av högtrycksfasen.

Page generated in 0.0822 seconds