• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Logic of Hereditary Harrop Formulas as a Specification Logic for Hybrid

Battell, Chelsea January 2016 (has links)
Hybrid is a two-level logical framework that supports higher-order abstract syntax (HOAS), where a specification logic (SL) extends the class of object logics (OLs) we can reason about. We develop a new Hybrid SL and formalize its metatheory, proving weakening, contraction, exchange, and cut admissibility; results that greatly simplify reasoning about OLs in systems providing HOAS. The SL is a sequent calculus defined as an inductive type in Coq and we prove properties by structural induction over SL sequents. We also present a generalized SL and metatheory statement, allowing us to prove many cases of such theorems in a general way and understand how to identify and prove the difficult cases. We make a concrete and measurable improvement to Hybrid with the new SL formalization and provide a technique for abstracting such proofs, leading to a condensed presentation, greater understanding, and a generalization that may be instantiated to other logics.
2

Reasoning Using Higher-Order Abstract Syntax in a Higher-Order Logic Proof Environment: Improvements to Hybrid and a Case Study

Martin, Alan J. 24 January 2011 (has links)
We present a series of improvements to the Hybrid system, a formal theory implemented in Isabelle/HOL to support specifying and reasoning about formal systems using higher-order abstract syntax (HOAS). We modify Hybrid's type of terms, which is built definitionally in terms of de Bruijn indices, to exclude at the type level terms with `dangling' indices. We strengthen the injectivity property for Hybrid's variable-binding operator, and develop rules for compositional proof of its side condition, avoiding conversion from HOAS to de Bruijn indices. We prove representational adequacy of Hybrid (with these improvements) for a lambda-calculus-like subset of Isabelle/HOL syntax, at the level of set-theoretic semantics and without unfolding Hybrid's definition in terms of de Bruijn indices. In further work, we prove an induction principle that maintains some of the benefits of HOAS even for open terms. We also present a case study of the formalization in Hybrid of a small programming language, Mini-ML with mutable references, including its operational semantics and a type-safety property. This is the largest case study in Hybrid to date, and the first to formalize a language with mutable references. We compare four variants of this formalization based on the two-level approach adopted by Felty and Momigliano in other recent work on Hybrid, with various specification logics (SLs), including substructural logics, formalized in Isabelle/HOL and used in turn to encode judgments of the object language. We also compare these with a variant that does not use an intermediate SL layer. In the course of the case study, we explore and develop new proof techniques, particularly in connection with context invariants and induction on SL statements.
3

Reasoning Using Higher-Order Abstract Syntax in a Higher-Order Logic Proof Environment: Improvements to Hybrid and a Case Study

Martin, Alan J. 24 January 2011 (has links)
We present a series of improvements to the Hybrid system, a formal theory implemented in Isabelle/HOL to support specifying and reasoning about formal systems using higher-order abstract syntax (HOAS). We modify Hybrid's type of terms, which is built definitionally in terms of de Bruijn indices, to exclude at the type level terms with `dangling' indices. We strengthen the injectivity property for Hybrid's variable-binding operator, and develop rules for compositional proof of its side condition, avoiding conversion from HOAS to de Bruijn indices. We prove representational adequacy of Hybrid (with these improvements) for a lambda-calculus-like subset of Isabelle/HOL syntax, at the level of set-theoretic semantics and without unfolding Hybrid's definition in terms of de Bruijn indices. In further work, we prove an induction principle that maintains some of the benefits of HOAS even for open terms. We also present a case study of the formalization in Hybrid of a small programming language, Mini-ML with mutable references, including its operational semantics and a type-safety property. This is the largest case study in Hybrid to date, and the first to formalize a language with mutable references. We compare four variants of this formalization based on the two-level approach adopted by Felty and Momigliano in other recent work on Hybrid, with various specification logics (SLs), including substructural logics, formalized in Isabelle/HOL and used in turn to encode judgments of the object language. We also compare these with a variant that does not use an intermediate SL layer. In the course of the case study, we explore and develop new proof techniques, particularly in connection with context invariants and induction on SL statements.
4

Reasoning Using Higher-Order Abstract Syntax in a Higher-Order Logic Proof Environment: Improvements to Hybrid and a Case Study

Martin, Alan J. 24 January 2011 (has links)
We present a series of improvements to the Hybrid system, a formal theory implemented in Isabelle/HOL to support specifying and reasoning about formal systems using higher-order abstract syntax (HOAS). We modify Hybrid's type of terms, which is built definitionally in terms of de Bruijn indices, to exclude at the type level terms with `dangling' indices. We strengthen the injectivity property for Hybrid's variable-binding operator, and develop rules for compositional proof of its side condition, avoiding conversion from HOAS to de Bruijn indices. We prove representational adequacy of Hybrid (with these improvements) for a lambda-calculus-like subset of Isabelle/HOL syntax, at the level of set-theoretic semantics and without unfolding Hybrid's definition in terms of de Bruijn indices. In further work, we prove an induction principle that maintains some of the benefits of HOAS even for open terms. We also present a case study of the formalization in Hybrid of a small programming language, Mini-ML with mutable references, including its operational semantics and a type-safety property. This is the largest case study in Hybrid to date, and the first to formalize a language with mutable references. We compare four variants of this formalization based on the two-level approach adopted by Felty and Momigliano in other recent work on Hybrid, with various specification logics (SLs), including substructural logics, formalized in Isabelle/HOL and used in turn to encode judgments of the object language. We also compare these with a variant that does not use an intermediate SL layer. In the course of the case study, we explore and develop new proof techniques, particularly in connection with context invariants and induction on SL statements.
5

Reasoning Using Higher-Order Abstract Syntax in a Higher-Order Logic Proof Environment: Improvements to Hybrid and a Case Study

Martin, Alan J. January 2010 (has links)
We present a series of improvements to the Hybrid system, a formal theory implemented in Isabelle/HOL to support specifying and reasoning about formal systems using higher-order abstract syntax (HOAS). We modify Hybrid's type of terms, which is built definitionally in terms of de Bruijn indices, to exclude at the type level terms with `dangling' indices. We strengthen the injectivity property for Hybrid's variable-binding operator, and develop rules for compositional proof of its side condition, avoiding conversion from HOAS to de Bruijn indices. We prove representational adequacy of Hybrid (with these improvements) for a lambda-calculus-like subset of Isabelle/HOL syntax, at the level of set-theoretic semantics and without unfolding Hybrid's definition in terms of de Bruijn indices. In further work, we prove an induction principle that maintains some of the benefits of HOAS even for open terms. We also present a case study of the formalization in Hybrid of a small programming language, Mini-ML with mutable references, including its operational semantics and a type-safety property. This is the largest case study in Hybrid to date, and the first to formalize a language with mutable references. We compare four variants of this formalization based on the two-level approach adopted by Felty and Momigliano in other recent work on Hybrid, with various specification logics (SLs), including substructural logics, formalized in Isabelle/HOL and used in turn to encode judgments of the object language. We also compare these with a variant that does not use an intermediate SL layer. In the course of the case study, we explore and develop new proof techniques, particularly in connection with context invariants and induction on SL statements.

Page generated in 0.0921 seconds