• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Unusual Eukaryotic tRNA Nucleotidyltransferases and Establishment of a High-Throughput Sequencing Method for Mature tRNAs

Erber, Lieselotte 10 August 2020 (has links)
Transfer RNA nucleotidyltransferases (CCA-adding enzymes) are important enzymes, which catalyze the attachment of a CCA triplet to the 3‘ end of tRNAs, an essential requirement for subsequent aminoacylation. These special enzymes function in a fascinating manner without a nucleic acid template. Furthermore, a substrate affinity switch from CTP to ATP is fulfilled with high specificity and the reaction is precisely terminated after addition of the terminal ATP. In some bacteria, the CCA-adding activity is divided into two enzymes: a CC- and an A-adding enzyme. This diversity that was long only assigned to Bacteria. However, the growing number of eukaryotic genomes allowed for deep bioinformatic investigation, revealing several eukaryotic organisms with an unusual amount of tRNA nucleotidyltransferase genes. In the present work, the function of several tRNA nucleotidyltransferases found in the genome of certain fungi, amoeba and choanoflagellates was investigated. For the tRNA nucleotidyltrans-ferases detected in Salpingoeca rosetta and Schizosaccharomyces pombe, a divided activity similar to bacterial CC- and A-adding enzymes could be observed. Additionally, in the amoeba Dictyostelium discoideum two bona fide CCA-adding enzymes were found, which are inversely regulated during the developmental cycle. In the amoeba Acanthamoeba castellanii, four different tRNA nucleotidyltransferases with different activities, localization and evolutionary origin were identified. Moreover, a method for the precise analysis of mature tRNAs by high-throughput sequencing was established as well. This method includes the specific ligation of a hairpin adapter molecule, which complementarily and highly efficiently binds to tRNAs with a 3’-CCA end resulting in a very specific preparation of tRNAs for high-throughput sequencing. It also allows for analysis of some modified bases usually found in tRNAs, which was used to analyze the alteration of certain tRNA modifications during the developmental cycle of D. discoideum.:Erklärung der Selbstständigkeit II List of Abbreviations V Bibliografische Darstellung VII Zusammenfassung 1 Summary 6 Chapter I 11 1.1. Transfer RNAs 12 1.1.1. Structure and maturation of transfer ribonucleic acids (tRNAs) 12 1.1.2. tRNAs as regulatory molecules and their role in diseases 13 1.1.3. Sequencing of tRNAs – a special challenge 14 1.1.4. The 3’-CCA end of tRNAs 15 1.2. tRNA nucleotidyltransferases 16 1.2.1. Classification and biological roles 16 1.2.2. Class II tRNA nucleotidyltransferases 18 1.2.3. Enzymes with split activity – bacterial CC- and A-adding enzymes 19 1.2.4. Two types of eukaryotic tRNA nucleotidyltransferases 21 1.2.5. Distribution of eukaryotic organisms with multiple tRNA nucleotidyltransferase genes 22 1.3. Aim of the work 23 1.4. References 25 Chapter II 33 Chapter III 44 Chapter IV 75 Chapter V 100 Chapter VI 119 Publications and Presentations IX Author Contribution Statement XI Danksagung XVI
2

Variation phénotypique de la résistance quantitative à Phytophthora capsici dans la diversité naturelle du piment, et diversité moléculaire et profil d'évolution du QTL majeur Pc5.1 / Phenotypic variation for quantitative resistance to Phytophthora capsici in pepper germplasm, and molecular diversity and evolution pattern of the major effect QTL Pc5.1

Cantet, Mélissa 12 April 2013 (has links)
L'utilisation de variétés présentant des résistances quantitatives polygéniques est une pratique respectueuse de l'environnement et potentiellement durable pour lutter contre les bioagresseurs. Les résistances quantitatives sont cependant mal connues et encore peu exploitées. Via l'étude de l'interaction Capsicum spp. / Phytophthora capsici, les objectifs sont de (i) caractériser la diversité naturelle de l'hôte pour le phénotype quantitatif de résistance, (ii) décrire la diversité au QTL Pc5.1, déterminant majeur de la résistance, conservé chez les géniteurs et efficace à large spectre, et (iii) déterminer le profil d'évolution moléculaire aux gènes candidats de Pc5.1. L'évaluation du niveau de résistance de ressources génétiques de Capsicum spp. et du spectre de résistance d'un panel d'accessions a permis d'identifier de nouveaux géniteurs de forte résistance au spectre large et a fourni un set d'isolats différenciant les accessions selon leur spectre. Le polymorphisme à Pc5.1 a été révélé par séquençage haut débit. Globalement, Pc5.1 présente un polymorphisme nucléotidique plus élevé que le reste du génome. Les accessions résistantes sont très peu divergentes au QTL, signe d'une forte conservation intra- et inter-génique, alors que les accessions sensibles sont plus polymorphes. Aux gènes candidats, deux haplotypes majeurs ont été identifiés, l'un présent quasi exclusivement chez des accessions résistantes et l'autre chez des accessions sensibles, ce qui confirme la forte conservation du locus et la divergence entre résistants et sensibles. Le déséquilibre de liaison mesuré aux gènes candidats étant fort, surtout chez les C. annuum, 65% des polymorphismes sont significativement associés à la résistance. Cette étude a mis en évidence le caractère contraint de l'allèle de résistance à Pc5.1 et interroge sur l'origine et l'histoire évolutive du QTL, en relation avec sonefficacité à large spectre. Il semble qu'une localisation proche du centromère limite les recombinaisons au locus et que la divergence entre les sensibles et les résistants soit un événement ancien. La détermination de la nature moléculaire et de l'histoire évolutive de Pc5.1 sera poursuivie en approfondissant les analyses de divergence des séquences et en se focalisant sur la validation fonctionnelle des gènes candidats déjà en cours. / An environmentally friendly and potentially durable strategy to control diseases is the breeding for varieties displaying quantitative polygenic resistances. However a few is known about quantitative resistances, which are thus underexploited. Through the investigation of the Capsicum spp. / Phytophthora capsici interaction, this study aimed to (i) phenotype natural host diversity for the quantitative resistance, (ii) describe the nucleotide diversity at the QTL Pc5.1, a major determinant of resistance that is retrieved among genitors and is broad-spectrum, and (iii) explore the pattern of molecular evolution at Pc5.1 candidate genes. Through the phenotyping for level of resistance in Capsicum spp. genetic resources and spectrum of resistance in a sample of accessions, novel genitors displaying strong and broadspectrum resistance have been identified, and a set of isolates that differentiate accessions according to their resistance spectrum has been established. High-throughput sequencing has been exploited to identify polymorphisms at Pc5.1. Nucleotide diversity at Pc5.1 is higher than over the genome. Resistant accessions displayed low divergence thatindicates high intra- and inter-genic conservation, while susceptible accessions are more polymorphic than resistant ones. At the candidate genes, two major haplotypes have been identified, one being almost exclusively exhibited by resistant accessions and the other by susceptible ones, which reinforces the assessments that the QTL is highly conserved and that resistant and susceptible accessions are divergent. Linkage disequilibrium at candidate genes being high, particularly for C. annuum, 65% of polymorphisms are in significant association with resistance. By highlightingthe constraint pattern of selection at Pc5.1, this study wonders about the origin and the evolution history of the QTL, in relation to its broad-spectrum efficiency. A close proximity with the centromere region seems to restrict recombinations at the QTL, and divergence between resistant and susceptible may be an ancient event. The investigation of the molecular function and the pattern of evolution of Pc5.1 will be continued through in depth study of the acquired sequences and functional validation of candidate genes already ongoing.

Page generated in 0.0995 seconds