• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On-device synthesis of customized carbon nanotube structures

Pitkänen, O. (Olli) 19 July 2019 (has links)
Abstract Carbon nanotubes (CNTs) are known for their excellent mechanical, electrical and thermal properties, that have fostered a vast number of applications during the last two decades, from composites, electrodes and nanoelectonics components, to sensors and biological scaffolds. Direct integration of CNTs into devices is not straightforward, as high growth temperatures (above 600 °C) challenge the chemical and thermal stability of substrates, catalysts and other nearby materials or components. However, by decreasing growth temperature and/or working out protocols that take into account the thermal stability of the materials involved, it is possible to create several new types of architectures and devices with functionalities not shown before. In this work, we show that, with selection of the appropriate substrate, diffusion barrier and catalyst materials, direct growth of functional CNT films and their micropatterns may be achieved, not only on Si chips, but also on other atypical surfaces, using chemical vapor deposition. This thesis explores low-temperature CNT synthesis over bi- and trimetallic catalysts, and investigates the effect of diffusion barrier layers on the electrical properties of substrate-to-CNT contacts. On one hand, the lowest achieved CNT synthesis temperature (400 °C) is compatible with most silicon technologies, thus enabling direct integration of CNTs with materials and devices with low thermal budgets. On the other hand, the results of diffusion barrier studies helped us in designing and demonstrating on-chip micropatterned CNT structures for super and pseudocapacitor electrodes. In addition, we also show a method for maskless growth of CNT micropatterns using laser-treated steel and superalloy surfaces, whose surface diffusion properties change as a result of barrier-type metal oxide formation. Furthermore, we present CNT growth on carbon materials and demonstrate entirely carbon-based hierarchical composites for electromagnetic interference shielding applications, exhibiting outstanding absorption-based shielding performance. The results presented in this thesis are expected to contribute to a further expansion of CNT-based technologies, in particular with potential for future advances in high-frequency devices (arrays, amplifiers and shielding materials), energy materials (electrodes and scaffolds), as well as in nanoelectromechanical systems (sensors and actuators). / Tiivistelmä Hiilinanoputket tunnetaan niiden erinomaisista mekaanisista, sähköisistä ja termisistä ominaisuuksista, joita on hyödynnetty lukuisissa sovelluksissa viimeisen kahden vuosikymmenen aikana alkaen komposiiteista, elektrodeista, nanoelektroniikkakomponenteista ja sensoreista aina biologisiin tukirakenteisiin. Nanoputkien synteesi suoraan laitteessa ei ole suoraviivaista, sillä korkeat, yli 600 °C synteesilämpötilat asettavat haasteita substraatin, katalyytin sekä muiden lähellä olevien materiaalien ja komponenttien kemialliselle ja termiselle vakaudelle. Alentamalla synteesilämpötilaa ja/tai kehittämällä termisen vakauden huomioivia menetelmiä on mahdollista luoda uudenlaisia arkkitehtuureja ja sovelluksia ennennäkemättömillä ominaisuuksilla. Tässä työssä osoitetaan, että sopivan substraatin, diffuusiosuojan ja katalyyttimateriaalin valitsemalla funktionaalisten hiilinanoputkien synteesi on mahdollista piin lisäksi myös muille, epätavallisille pinnoille käyttäen kemiallista kaasufaasipinnoitusta. Väitöstyössä käsitellään hiilinanoputkien matalan lämpötilan synteesiä hyödyntäen kaksi- ja kolmimetallisia katalyyttejä sekä tutkitaan diffuusiosuojakerroksen sähköistä vaikutusta substraatin ja hiilinanoputkien väliseen kontaktiin. Alin saavutettu synteesilämpötila (400 °C) on yhteensopiva useimpien piiteknologioiden kanssa, mikä mahdollistaa nanoputkien suoran integroinnin matalaa lämpötilaa edellyttäville materiaaleille. Työssä tutkitun diffuusiosuojakerroksen kehitys mahdollisti myös piisirun päälle toteutettujen hiilinanoputkipohjaisten super- ja pseudokondensaattorielektrodien demonstroinnin. Lisäksi työssä esitetään menetelmä, jossa laserkäsittelemällä teräs- ja supermetalliseospinta, jonka avulla mikrokuvioitu hiilinanoputkien kasvu ilman litografiaprosessia on mahdollista. Viimeisenä työssä esitetään hiilinanoputkien synteesi suoraan toiselle hiilimateriaalille ja demonstroidaan täysin hiilipohjainen, hierarkkinen komposiittimateriaali erinomaisella absorptioon perustuvalla suojauskyvyllä sähkömagneettisiin häiriösuojaussovelluksiin. Väitöstyössä esitettyjen tulosten odotetaan osaltaan edistävän hiilinanoputkipohjaisten teknologioiden kehitystä erityisesti korkean taajuuden laitteissa, energiamateriaaleissa sekä nanosähkömekaanisissa järjestelmissä.
2

Electrical and thermal applications of carbon nanotube films

Mäklin, J. (Jani) 28 March 2014 (has links)
Abstract Carbon nanotubes (CNTs) have fascinating mechanical, electrical and thermal properties, all of which significantly depend on structural properties such as nanotube length, number of walls, lattice defect densities, impurities and surface functional groups. A number of different applications of carbon nanotubes have been demonstrated during the past two decades including electrical interconnects, transistors, heating and cooling devices, sensors and various actuators. However, further studies on the structure-dependent properties and innovative handling techniques of these materials are needed in order to explore the limitations of use and to be able fully to exploit the advantageous properties of such one-dimensional sp2 hybridized carbon nanomaterials. In this thesis, random networks of single-wall and multi-walled carbon nanotubes (SWCNTs and MWCNTs, respectively) and aligned films of multi-walled carbon nanotubes are studied in the context of three main application fields: gas sensing, electrical interconnects/electrodes and thermal cooling elements. Analyses of associated material properties and some feasible integration techniques are discussed. Single-wall and multi-walled carbon nanotube films cast from aqueous dispersions are shown to be selective nitric oxide sensing components in Taguchi-type sensor devices, in which films based on SWCNTs outperformed those made of MWCNTs. The thickness dependent electrical conduction mechanism of inkjet-printed SWCNT films is also discussed. Robust aligned MWCNT films are demonstrated as soft electrical contact brushes in DC motors and in other moving electrical contacts. The thermal properties of freestanding aligned MWCNT forests are analyzed and shown to be potential alternatives to copper or aluminium in the thermal management of electrical components. / Tiivistelmä Hiilinanoputkien kiehtovat mekaaniset, sähköiset ja lämmönjohto-ominaisuudet ovat kiinnostaneet tutkijoita suuresti viimeisten kahden vuosikymmenen ajan. Monia erilaisia applikaatioita on demonstroitu tänä aikana: mukaan lukien sähköiset kontaktit, transistori-rakenteet, lämmitys- ja jäähdytyslaitteet, anturirakenteet sekä erilaiset aktuaattori-rakenteet. Tämän väitöskirjan päätavoitteena on tutkia hiilinanoputkien toiminnollisuutta ja käytännöllisyyttä erilaisissa sovelluskohteissa. Tässä työssä käytettävät hiilinanoputkirakenteet ovat joko satunnaisjärjestyksessä olevia nanoputkista koostuvia verkostorakenteita tai yhdensuuntaisia, makroskooppisia hiilinanoputkikalvoja. Nanoputkia tutkitaan kolmessa erityyppisessä sovelluskohteessa: kaasuanturisovelluksessa, sähköisissä kontaktirakenteissa sekä jäähdytyselementteinä. Työssä analysoidaan hiilinanoputkirakenteiden ominaisuuksia eri sovelluskohteissa sekä esitetään joitain käyttökelpoisia tekniikoita hiilinanoputkien integroimiseen olemassa oleviin tekniikoihin. Hiilinanoputkien osoitetaan olevan käyttökelpoisia aktiivisia materiaaleja typpioksidille resistiivisessä kaasuanturirakenteessa. Tulosten perusteella yksiseinämäiset hiilinanoputket ovat moniseinämäisiä herkempiä ja parempia kyseisessä sovelluksessa. Lisäksi tutkitaan ja analysoidaan mustesuihku-tulostettujen yksiseinämäisten hiilinanoputkifilmien sähköisten ominaisuuksien riippuvuutta filmin paksuudesta. Vantterien yhdensuuntaisten moniseinämäisten hiilinanoputkirakenteiden osoitetaan toimivan erinomaisesti pehmeinä sähköisinä kontaktielementteinä liikkuvissa sähköisissä kontakteissa. Vapaasti seisovien yhdensuuntaisten, moniseinämäisten hiilinanoputkirakenteiden lämmönjohto-ominaisuuksien tutkiminen ja analysointi osoittaa, että kyseisiä rakenteita voidaan käyttää tehokkaina jäähdytyselementteinä ja mahdollisesti korvaavana vaihtoehtona alumiinille ja kuparille sähköisten komponenttien lämmönhallinta sovelluksissa.
3

Synthesis and applications of macroscopic well-aligned multi-walled carbon nanotube films

Halonen, N. (Niina) 29 October 2013 (has links)
Abstract The main objectives of this thesis are to synthesize macroscopic well-aligned multi-walled carbon nanotube films and, based on their electrical conductivity, porosity and structural uniformity, highlight potential applications for further development. In this thesis, catalytic chemical vapour deposition from ferrocene-xylene precursors is optimized to grow high quality films of long, aligned multi-walled carbon nanotubes on lithographically patterned templates in high (~800ºC) temperatures. The impacts of reaction time, temperature and precursor concentration on MWCNT film quality (film thickness, purity, density and nanotube diameter distribution) are studied. Because of the excellent control of growth selectivity and film thickness inherent to the method, several interesting applications, including solar cell and capacitor electrodes, contact brushes, coolers, particulate filters and catalyst membranes, have been developed for nanotube films in collaboration between Finnish and international research groups over the past few years. In this thesis, advanced capacitor electrodes with improved charge storage and efficient particulate filters are discussed in closer detail. As the high temperatures used for growing high quality carbon nanotubes often cause complications in cases where nanotubes need to be directly integrated with other materials, experiments were also conducted with the aim of making the growth temperature as low as possible. After testing several catalyst and precursor combinations, cobalt nanoparticles deposited on silica surfaces were found to form carbon nanotubes from vaporized cyclopentene oxide precursor already at 470°C. The results show that catalytic chemical vapour deposition is a feasible and versatile method that can be combined with photolithography to produce multi-walled carbon nanotube films with desired footprint area and thickness on various substrates. The demonstrated new applications and technical solutions are expected to contribute to further development leading to competitive practical devices based on carbon nanotubes. / Tiivistelmä Tämän väitöstyön päätavoitteina ovat makroskooppisten, yhdensuuntaisista moniseinämäisistä hiilinanoputkista koostuvien kalvojen valmistaminen ja sovellutusten esittäminen perustuen kalvojen sähkönjohtavuuteen, huokoisuuten ja rakenteelliseen yhdenmukaisuuteen. Katalyyttis-kemiallinen höyryfaasikasvatusmenetelmä on optimoitu korkealaatuisten, yhdensuuntaisista, pitkistä moniseinämäisistä hiilinanoputkista koostuvien kalvojen tuottamiseen korkeissa lämpötiloissa (~800ºC) fotolitografialla kuvioiduille kasvualustoille käyttäen ferroseeni/ksyleeni-lähtöainetta. Reaktioajan, lämpötilan ja lähtöainepitoisuuden vaikutusta nanoputkikalvon laatuun on tutkittu tarkastelemalla kalvon paksuutta, puhtautta, tiheyttä ja nanoputkien läpimittajakaumaa. Erinomaisen kasvuselektiivisyyden ja kalvon paksuuden kontrolloimisen ansiosta nanoputkikalvoja voidaan räätälöidä useisiin mielenkiintoisiin sovellutuksiin (esim. aurinkokennot ja kondensaattorin elektrodit, hiiliharjat, jäähdyttimet, partikkelisuodattimet ja katalyyttikalvot), joita olemme kehittäneet viime vuosina yhdessä suomalaisten ja kansainvälisten tutkimusryhmien kanssa. Tässä väitöstyössä on tarkasteltu lähemmin uudentyyppisiä kondensaattorielektrodeja, joilla on parantunut sähkövarauksen varastointikyky, sekä tehokkaita partikkelisuodattimia. Hiilinanoputkien kasvattaminen korkeissa lämpötiloissa aiheuttaa usein ongelmia integroitaessa nanoputkia toisiin materiaaleihin. Tästä johtuen tutkimuksessa pyrittiin saamaan nanoputkien kasvatuslämpötila mahdollisimman alhaiseksi testaamalla useita lähtöaine-katalyytti-kombinaatioita, joista koboltti-nanopartikkelit piidioksidin päällä ja syklopenteenioksidi lähtöaineena muodostivat hiilinanoputkia jo 470°C:ssa. Tulosten perusteella katalyyttis-kemiallinen höyryfaasikasvatusmenetelmä yhdistettynä fotolitografiaan on hyvin monipuolinen tapa tuottaa moniseinämäisiä hiilinanoputkia halutulla kuviolla ja kalvonpaksuudella erilaisille substraateille. Tässä väitöstyössä demonstroitujen uusien sovellutusten ja teknisten ratkaisujen odotetaan johtavan uusiin, hiilinanoputkiin perustuviin kilpailukykyisiin käytännön laitteisiin.

Page generated in 0.0341 seconds