• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The timing of peak tissue velocities at the proximal femur during adolescence

Jackowski, Stefan A 14 August 2008
Purpose: The objective of this study was to examine the timing of the age and the magnitude of peak lean tissue mass accrual (peak lean tissue velocity, PLTV) as it relates to the age and magnitude of peak cross sectional area velocity (PCSAV) and section modulus velocity (PZV) of proximal femur in both males and females during adolescence. We hypothesized that the age of PLTV would precede the age of PCSAV and PZV and that there be a positive relationship between the magnitude of PLTV and both PCSAV and PZV in both genders. <p>Methods: 41 males and 42 females aged 8-18 years were selected from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991-2005). Participants total body lean tissue mass was assessed annually for 6 consecutive years using DXA. Narrow neck, intertrochanteric and femoral shaft cross sectional areas (CSA) and section modulus (Z) were determined annually using the hip structural analysis (HSA) program. Participants were aligned by maturational age (years from peak height velocity). Lean tissue mass, CSA, and Z were converted into whole year velocities and the maturational age of peak tissue velocities was determined using a cubic spline curve fitting procedure. A 2x3 (gender x tissue) factorial MANOVA with repeated measures was used to test for differences between age of PLTV and both, the age of PCSAV and PZV between males and females. Multiple regression analyses were used to determine the relationship between PLTV and both PCSAV and PZV.<p>Results: There were no sex differences in the ages at which tissue peaks occurred when aligned by maturational age. There were significant differences between the age of PLTV and both PCSAV and PZV at the narrow neck (p=0.001) and femoral shaft (p=0.03), where the age of PLTV preceded both PCSAV and PZV when pooled by gender. There were no significant differences at the intertrochanteric site (p=0.814). PLTV was a significant predictor of the magnitude of both PCSAV and PZV at all sites (p<0.05). <p> Conclusions: These findings support the hypothesis that the age of PLTV precedes the age of PCSA and PZV at the proximal femur and provides further evidence to support the muscle-bone relationship, suggesting that lean tissue mass accrual influences bone strength development at proximal femur during pubertal growth.
2

The timing of peak tissue velocities at the proximal femur during adolescence

Jackowski, Stefan A 14 August 2008 (has links)
Purpose: The objective of this study was to examine the timing of the age and the magnitude of peak lean tissue mass accrual (peak lean tissue velocity, PLTV) as it relates to the age and magnitude of peak cross sectional area velocity (PCSAV) and section modulus velocity (PZV) of proximal femur in both males and females during adolescence. We hypothesized that the age of PLTV would precede the age of PCSAV and PZV and that there be a positive relationship between the magnitude of PLTV and both PCSAV and PZV in both genders. <p>Methods: 41 males and 42 females aged 8-18 years were selected from the Saskatchewan Pediatric Bone Mineral Accrual Study (1991-2005). Participants total body lean tissue mass was assessed annually for 6 consecutive years using DXA. Narrow neck, intertrochanteric and femoral shaft cross sectional areas (CSA) and section modulus (Z) were determined annually using the hip structural analysis (HSA) program. Participants were aligned by maturational age (years from peak height velocity). Lean tissue mass, CSA, and Z were converted into whole year velocities and the maturational age of peak tissue velocities was determined using a cubic spline curve fitting procedure. A 2x3 (gender x tissue) factorial MANOVA with repeated measures was used to test for differences between age of PLTV and both, the age of PCSAV and PZV between males and females. Multiple regression analyses were used to determine the relationship between PLTV and both PCSAV and PZV.<p>Results: There were no sex differences in the ages at which tissue peaks occurred when aligned by maturational age. There were significant differences between the age of PLTV and both PCSAV and PZV at the narrow neck (p=0.001) and femoral shaft (p=0.03), where the age of PLTV preceded both PCSAV and PZV when pooled by gender. There were no significant differences at the intertrochanteric site (p=0.814). PLTV was a significant predictor of the magnitude of both PCSAV and PZV at all sites (p<0.05). <p> Conclusions: These findings support the hypothesis that the age of PLTV precedes the age of PCSA and PZV at the proximal femur and provides further evidence to support the muscle-bone relationship, suggesting that lean tissue mass accrual influences bone strength development at proximal femur during pubertal growth.

Page generated in 0.1058 seconds