Spelling suggestions: "subject:"hiperinterpolation"" "subject:"hyperinterpolation""
1 |
"Interpolação e hiperinterpolação em esferas" / Interpolation and hiperinterpolation on the spheresPiantella, Ana Carla 27 February 2003 (has links)
Os objetivos deste trabalho são: i) Fixado um inteiro positivo n, estudar dois métodos "construtivos" para aproximar-se uma função real contínua definida na esfera unitária S ^{r-1} de R^r, por polinômios esféricos de grau <=n; ii) Obter estimativas para as normas dos operadores de interpolação e hiperinterpolação, comparando-as com a norma da projeção ortogonal de C(S^{r-1}) sobre o espaço de polinômios onde as aproximações residem. / This work addresses two issues: i) To study two constructive methods to approximate a real continuous function on the unit sphere S^{r-1} of R^r by spherical polynomials of degree <=n (n fixed); ii) To estimate the norms of the interpolation and hyperinterpolation operators, comparing them with the norm of the orthogonal projection of C(S^{r-1}) over the polynomial space where the approximations live.
|
2 |
"Interpolação e hiperinterpolação em esferas" / Interpolation and hiperinterpolation on the spheresAna Carla Piantella 27 February 2003 (has links)
Os objetivos deste trabalho são: i) Fixado um inteiro positivo n, estudar dois métodos "construtivos" para aproximar-se uma função real contínua definida na esfera unitária S ^{r-1} de R^r, por polinômios esféricos de grau <=n; ii) Obter estimativas para as normas dos operadores de interpolação e hiperinterpolação, comparando-as com a norma da projeção ortogonal de C(S^{r-1}) sobre o espaço de polinômios onde as aproximações residem. / This work addresses two issues: i) To study two constructive methods to approximate a real continuous function on the unit sphere S^{r-1} of R^r by spherical polynomials of degree <=n (n fixed); ii) To estimate the norms of the interpolation and hyperinterpolation operators, comparing them with the norm of the orthogonal projection of C(S^{r-1}) over the polynomial space where the approximations live.
|
Page generated in 0.0629 seconds