Spelling suggestions: "subject:"historiska biogeografia"" "subject:"historiska biogeografie""
1 |
Spikemoss patterns : Systematics and historical biogeography of Selaginellaceae / Mosslummermönster : Systematik och historisk biogeografi hos SelaginellaceaeWeststrand, Stina January 2016 (has links)
Selaginellaceae, spikemosses, is a heterosporous plant family belonging to the lycophytes. With an estimated age of some 350 million years, the family is historically important as one of the oldest known groups of vascular plants. Selaginellaceae is herbaceous with a worldwide distribution. However, the majority of the ca. 750 species in the single genus Selaginella are found in the tropics and subtropics. This thesis aims at elucidating the systematics and historical biogeography of Selaginellaceae. The evolutionary relationships of the family were inferred from DNA sequence data (plastid and single-copy nuclear) of one-third of the species richness in the group. Attention was paid to cover the previously undersampled taxonomic, morphological, and geographical diversity. Morphological features were studied and mapped onto the phylogeny. The results show an overall well-supported phylogeny and even more complex morphological patterns than previously reported. Despite this, many clades can be distinguished by unique suites of morphological features. With the phylogeny as a basis, together with the thorough morphological studies, a new subgeneric classification with seven subgenera, representing strongly supported monophyletic groups, is presented for Selaginella. By mainly using gross morphological features, easily studied by the naked eye or with a hand lens, the intention is that the classification should be useful to a broader audience. During the work with species determinations, it was revealed that the correct name for an endemic Madagascan Selaginella species is S. pectinata Spring, not S. polymorpha Badré as previously proposed. The robust phylogeny of Selaginellaceae allowed for a historical biogeographical analysis of the group. A time-calibrated phylogeny, together with extant species distribution data, formed the basis. The results show pre-Pangean diversification patterns, Gondwanan vicariance, and more recent Cenozoic long-distance dispersals. The many inferred transoceanic dispersals during the last 50 million years are surprising considering Selaginella’s large megaspores that are thought to have a negative effect on dispersal. In conclusion, this thesis presents a well-founded hypothesis of the evolutionary history of Selaginellaceae including its phylogeny, morphology, and historical biogeography. The thesis forms a firm basis for further studies on Selaginellaceae in particular, and gives us a better understanding of early land plant evolution in general.
|
Page generated in 0.0477 seconds