1 |
The Regulation of the Alternative Splicing of Caspase 9Goehe, Rachel 24 September 2010 (has links)
The pro-apoptotic, caspase 9a, and the anti-apoptotic, caspase 9b, are derived from the caspase 9 gene by alternative splicing. This study demonstrates that the alternative splicing of caspase 9 is dysregulated in a large percentage of non-small cell lung cancer (NSCLC) tumors of the adenocarcinoma type. Furthermore, modulation of the levels of splice variants of caspase 9 had dramatic effects on the anchorage-independent growth and tumorigenic capacity of NSCLC cells. Due to these findings, the molecular mechanisms regulating the post-transcriptional processing of caspase 9 were therefore examined and an exonic splicing silencer (ESS) regulating the pre-mRNA processing of caspase 9 was identified. To study the possible RNA trans-factors interacting with this RNA sequence, we utilized an electromobility shift assay (EMSA) coupled with competitor studies and demonstrated three specific protein:RNA complexes for this ESS. Affinity purification and mass spectrometry analysis identified hnRNP L as part of these protein:RNA complexes. Downregulation of hnRNP L induced a significant increase in caspase 9a/caspase 9b mRNA ratio, which translated to the protein level. Expression of hnRNP L verified the siRNA specificity lowering the caspase 9a/9b ratio, but expression of hnRNP L produced the contrasting effect in non-transformed cells suggesting a post-translational modification specific for NSCLC cells. Indeed, the phospho-status of hnRNP L was significantly increased in NSCLC cells, and mutagenesis studies identified Ser52 as a critical residue regulating the ability of hnRNP L to repress the inclusion of the exon 3,4,5,6 cassette into the mature caspase 9 mRNA. The biological relevance of this mechanism was demonstrated by stable downregulation of hnRNP L in NSCLC cells, which induced a complete loss of both anchorage-independent growth and tumorigenic capacity. This effect of hnRNP L downregulation was due to distal modulation of the alternative splicing of caspase 9 as the loss of both phenotypes was “rescued” by ectopic expression of caspase 9b. Therefore, this study identifies cancer-specific mechanism of hnRNP L phosphorylation and subsequent lowering of the caspase 9a/9b ratio, which is required for the tumorigenic capacity of NSCLC cells.
|
2 |
Regulation of alternative pre-mRNA splicing by depolarization/CaMKIVLiu, Guodong 29 June 2012 (has links)
Alternative pre-mRNA splicing is often controlled by cell signals (1-3). Membrane depolarization/calcium (Ca2+) signaling controls alternative splicing of a group of genes in neurons and endocrine cells (4-9), with important implications in memory formation or secretion of hormones and neurotransmitters (10-15). However, the underlying molecular basis remains largely unknown.
In rat GH3 pituitary cells, BK potassium channels control cellular electrical firing, which is critical for the release of growth hormone and prolactin. Inclusion of the STREX exon of the Slo1 gene encoding the channel α subunit is repressed by the Ca2+/calmodulin-dependent kinase IV (CaMKIV) upon depolarization (4). We isolated CaMKIV-responsive RNA elements (CaRREs) from a library of 13-nucleotide random sequences through in vivo selection in HEK293T cells. Most elements are CA-rich or A-rich, with the heterogeneous nuclear ribonucleoprotein (hnRNP) L as a binding factor. This is consistent with the finding that CA-rich elements and hnRNP L are targeted by CaMKIV in the regulation of splicing (16).
In further efforts to directly link the kinase with hnRNP L, we showed that hnRNP L is essential for the full repression of STREX by depolarization and that a highly conserved CaMKIV target serine (Ser513) of L is required. Ser513 phosphorylation enhanced L binding to the STREX CaRRE1, leading to reduced binding of the constitutive factor U2AF65 to the 3’ splice site of STREX. Mutation of Ser513 abolished both activities. Therefore, hnRNP L mediates the repression of STREX by depolarization through modulation of a key step in spliceosomal assembly.
We further identified hnRNP L, L-like (LL) and PTB as repressors of STREX and other depolarization-regulated exons with differential effects. Moreover, a full response of STREX to depolarization is mediated by combinations of hnRNP L and LL or PTB. Another depolarization-responsive exon, the exon 18 of the neuregulin 1 gene, is also controlled in a similar way, with the hnRNP L Ser513 required as well.
This work provides the first direct link between the Ca2+ signaling and a specific serine of a regulatory splicing factor. Elucidation of the underlying molecular mechanisms would likely help us understand the fine-tuning of hormone secretion and memory formation.
|
3 |
Regulation of alternative pre-mRNA splicing by depolarization/CaMKIVLiu, Guodong 29 June 2012 (has links)
Alternative pre-mRNA splicing is often controlled by cell signals (1-3). Membrane depolarization/calcium (Ca2+) signaling controls alternative splicing of a group of genes in neurons and endocrine cells (4-9), with important implications in memory formation or secretion of hormones and neurotransmitters (10-15). However, the underlying molecular basis remains largely unknown.
In rat GH3 pituitary cells, BK potassium channels control cellular electrical firing, which is critical for the release of growth hormone and prolactin. Inclusion of the STREX exon of the Slo1 gene encoding the channel α subunit is repressed by the Ca2+/calmodulin-dependent kinase IV (CaMKIV) upon depolarization (4). We isolated CaMKIV-responsive RNA elements (CaRREs) from a library of 13-nucleotide random sequences through in vivo selection in HEK293T cells. Most elements are CA-rich or A-rich, with the heterogeneous nuclear ribonucleoprotein (hnRNP) L as a binding factor. This is consistent with the finding that CA-rich elements and hnRNP L are targeted by CaMKIV in the regulation of splicing (16).
In further efforts to directly link the kinase with hnRNP L, we showed that hnRNP L is essential for the full repression of STREX by depolarization and that a highly conserved CaMKIV target serine (Ser513) of L is required. Ser513 phosphorylation enhanced L binding to the STREX CaRRE1, leading to reduced binding of the constitutive factor U2AF65 to the 3’ splice site of STREX. Mutation of Ser513 abolished both activities. Therefore, hnRNP L mediates the repression of STREX by depolarization through modulation of a key step in spliceosomal assembly.
We further identified hnRNP L, L-like (LL) and PTB as repressors of STREX and other depolarization-regulated exons with differential effects. Moreover, a full response of STREX to depolarization is mediated by combinations of hnRNP L and LL or PTB. Another depolarization-responsive exon, the exon 18 of the neuregulin 1 gene, is also controlled in a similar way, with the hnRNP L Ser513 required as well.
This work provides the first direct link between the Ca2+ signaling and a specific serine of a regulatory splicing factor. Elucidation of the underlying molecular mechanisms would likely help us understand the fine-tuning of hormone secretion and memory formation.
|
4 |
Alternative splicing by hnRNP L as a new modulator of hematopoietic cell differentiation, survival and migrationGaudreau, Marie-Claude 01 1900 (has links)
Les modifications post-transcriptionnelles de l’ARN messager (ARNm), comme l’épissage alternatif, jouent un rôle important dans la régulation du développement embryonnaire, de la fonction cellulaire et de l’immunité. De nouvelles évidences révèlent que l’épissage alternatif serait également impliqué dans la régulation de la maturation et de l’activation des cellules du système hématopoïétique. Le facteur hnRNP L a été identifié comme étant le principal régulateur de l’épissage alternatif du gène codant pour le récepteur CD45 in vitro. Le récepteur CD45 est une tyrosine phosphatase exprimée par toutes les cellules du système hématopoïétique qui contrôle le développement et l’activation des lymphocytes T.
Dans un premier temps, nous avons étudié la fonction du facteur hnRNP L dans le développement des lymphocytes T et dans l’épissage de l’ARNm de CD45 in vivo en utilisant des souris dont le gène de hnRNP L a été supprimé spécifiquement dans les cellules T. La délétion de hnRNP L dans les thymocytes résulte en une expression aberrante des différents isoformes de CD45 avec une prédominance de l'isoforme CD45RA qui est généralement absent dans le thymus. Une conséquence de la délétion de hnRNP L est une diminution de la cellularité du thymus causée par un blocage partiel du développement des cellules pré-T au stade DN4. Cette réduction du nombre de cellules dans le thymus n’est pas liée à une hausse de la mort cellulaire. Les thymocytes déficients pour hnRNP L démontrent plutôt une prolifération augmentée comparée aux thymocytes sauvages due à une hyper-activation des kinases Lck, Erk1/2 et Akt. De plus, la délétion de hnRNP L dans le thymus cause une perte des cellules T en périphérie. Les résultats des expériences in vitro suggèrent que cette perte est principalement due à un défaut de migration des thymocytes déficients pour hnRNP L du thymus vers la périphérie en réponse aux chimiokines. L’épissage alternatif de CD45 ne peut expliquer ce phénotype mais l’identification de cibles par RNA-Seq a révélé un rôle de hnRNP L dans la régulation de l’épissage alternatif de facteurs impliqués dans la polymérisation de l’actine.
Dans un second temps, nous avons étudié le rôle de hnRNP L dans l’hématopoïèse en utilisant des souris dont la délétion de hnRNP L était spécifique aux cellules hématopoïétiques dans les foies fœtaux et la moelle osseuse. L’ablation de hnRNP L réduit le nombre de cellules progénitrices incluant les cellules progénitrices lymphocytaires (CLPs), myéloïdes (CMPs, GMPs) et mégakaryocytes-érythrocytaires (MEPs) et une perte des cellules hématopoïétiques matures. À l’opposé des cellules progénitrices multipotentes (MPPs) qui sont affectées en absence de hnRNP L, la population de cellules souches hématopoïétiques (HSCs) n’est pas réduite et prolifère plus que les cellules contrôles. Cependant, les HSCs n’exprimant pas hnRNP L sont positives pour l'Annexin V et expriment CD95 ce qui suggère une mort cellulaire prononcée. Comme pour les thymocytes, une analyse par RNA-Seq des foies fœtaux a révélé différents gènes cibles de hnRNP L appartenant aux catégories reliées à la mort cellulaire, la réponse aux dommages à l’ADN et à l’adhésion cellulaire qui peuvent tous expliquer le phénotype des cellules n’exprimant pas le gène hnRNP L.
Ces résultats suggèrent que hnRNP L et l’épissage alternatif sont essentiels pour maintenir le potentiel de différenciation des cellules souches hématopoïétiques et leur intégrité fonctionnelle. HnRNP L est aussi crucial pour le développement des cellules T par la régulation de l’épissage de CD45 ainsi que pour leur migration. / Post-transcriptional modifications of pre-mRNA by alternative splicing are important for cellular function, development and immunity. New evidence reveals that alternative splicing is implicated in the regulation of maturation and activation of hematopoietic cells. HnRNP L has been identified as the main regulator of alternative splicing of CD45 in vitro. The receptor tyrosine phosphatase CD45, which is expressed on all hematopoietic cells, is known for its role in the development and activation of T cells.
First, we have investigated the function of hnRNP L in T cell development and CD45 pre-mRNA splicing in vivo using T cell specific deletion of hnRNP L in mice. The hnRNP L deletion results in aberrant expression of CD45 isoforms, predominantly CD45RA, which is usually absent from the thymus. Ablation of hnRNP L results in a partial block in pre-T cell development at the DN4 stage. This reduction in thymic cellularity is not due to an increase in cell death. In fact, hnRNP L deficient thymocytes demonstrate accelerated proliferation compared to wild-type cells due principally to a hyper-activation of the kinases Lck, Erk1/2 and Akt. Moreover, hnRNP L deletion results in a loss of peripheral T cells. In vitro studies suggest that this loss of peripheral cells is caused by a defect in response to chemokine signals. Since CD45 pre-mRNA splicing cannot explain this phenotype, the identification of hnRNP L targets by RNA-Seq has shown that hnRNP L plays a role in the regulation of alternative splicing of factors involved in actin polymerization.
Secondly, we studied the role of hnRNP L in hematopoiesis using knockout mice in which hnRNP L is conditionally deleted specifically in fetal liver and bone marrow hematopoietic cells. Ablation of hnRNP L reduces the number of cell lineage committed progenitors including the common lymphoid progenitors (CLPs), common myeloid and granulocyte progenitors (CMPs, GMPs) and the megakaryocyte-erythrocyte progenitors (MEPs) as well as the mature hematopoietic cells. In contrast to multipotent progenitors (MPPs) that are affected by the absence of hnRNP L, the hematopoietic stem cell (HSC) population is not reduced. In fact, HSCs from hnRNP L deleted mice demonstrate increased cell cycling. However, hnRNP L deficient HSCs express high levels of Annexin V and CD95, which suggests an increased cell death. As for the thymus, a RNA-Seq analysis of fetal livers revealed different targets of hnRNP L among gene categories related to cell death, DNA damage responses and cell adhesion that may explain the phenotype observed in the hnRNP L deficient HSCs.
These results suggest that hnRNP L and alternative splicing are essential for the survival and maintenance of the differentiation potential of HSCs. HnRNP L is also crucial for the development of T cells by regulating both their migration and the splicing of CD45.
|
5 |
Alternative splicing by hnRNP L as a new modulator of hematopoietic cell differentiation, survival and migrationGaudreau, Marie-Claude 01 1900 (has links)
Les modifications post-transcriptionnelles de l’ARN messager (ARNm), comme l’épissage alternatif, jouent un rôle important dans la régulation du développement embryonnaire, de la fonction cellulaire et de l’immunité. De nouvelles évidences révèlent que l’épissage alternatif serait également impliqué dans la régulation de la maturation et de l’activation des cellules du système hématopoïétique. Le facteur hnRNP L a été identifié comme étant le principal régulateur de l’épissage alternatif du gène codant pour le récepteur CD45 in vitro. Le récepteur CD45 est une tyrosine phosphatase exprimée par toutes les cellules du système hématopoïétique qui contrôle le développement et l’activation des lymphocytes T.
Dans un premier temps, nous avons étudié la fonction du facteur hnRNP L dans le développement des lymphocytes T et dans l’épissage de l’ARNm de CD45 in vivo en utilisant des souris dont le gène de hnRNP L a été supprimé spécifiquement dans les cellules T. La délétion de hnRNP L dans les thymocytes résulte en une expression aberrante des différents isoformes de CD45 avec une prédominance de l'isoforme CD45RA qui est généralement absent dans le thymus. Une conséquence de la délétion de hnRNP L est une diminution de la cellularité du thymus causée par un blocage partiel du développement des cellules pré-T au stade DN4. Cette réduction du nombre de cellules dans le thymus n’est pas liée à une hausse de la mort cellulaire. Les thymocytes déficients pour hnRNP L démontrent plutôt une prolifération augmentée comparée aux thymocytes sauvages due à une hyper-activation des kinases Lck, Erk1/2 et Akt. De plus, la délétion de hnRNP L dans le thymus cause une perte des cellules T en périphérie. Les résultats des expériences in vitro suggèrent que cette perte est principalement due à un défaut de migration des thymocytes déficients pour hnRNP L du thymus vers la périphérie en réponse aux chimiokines. L’épissage alternatif de CD45 ne peut expliquer ce phénotype mais l’identification de cibles par RNA-Seq a révélé un rôle de hnRNP L dans la régulation de l’épissage alternatif de facteurs impliqués dans la polymérisation de l’actine.
Dans un second temps, nous avons étudié le rôle de hnRNP L dans l’hématopoïèse en utilisant des souris dont la délétion de hnRNP L était spécifique aux cellules hématopoïétiques dans les foies fœtaux et la moelle osseuse. L’ablation de hnRNP L réduit le nombre de cellules progénitrices incluant les cellules progénitrices lymphocytaires (CLPs), myéloïdes (CMPs, GMPs) et mégakaryocytes-érythrocytaires (MEPs) et une perte des cellules hématopoïétiques matures. À l’opposé des cellules progénitrices multipotentes (MPPs) qui sont affectées en absence de hnRNP L, la population de cellules souches hématopoïétiques (HSCs) n’est pas réduite et prolifère plus que les cellules contrôles. Cependant, les HSCs n’exprimant pas hnRNP L sont positives pour l'Annexin V et expriment CD95 ce qui suggère une mort cellulaire prononcée. Comme pour les thymocytes, une analyse par RNA-Seq des foies fœtaux a révélé différents gènes cibles de hnRNP L appartenant aux catégories reliées à la mort cellulaire, la réponse aux dommages à l’ADN et à l’adhésion cellulaire qui peuvent tous expliquer le phénotype des cellules n’exprimant pas le gène hnRNP L.
Ces résultats suggèrent que hnRNP L et l’épissage alternatif sont essentiels pour maintenir le potentiel de différenciation des cellules souches hématopoïétiques et leur intégrité fonctionnelle. HnRNP L est aussi crucial pour le développement des cellules T par la régulation de l’épissage de CD45 ainsi que pour leur migration. / Post-transcriptional modifications of pre-mRNA by alternative splicing are important for cellular function, development and immunity. New evidence reveals that alternative splicing is implicated in the regulation of maturation and activation of hematopoietic cells. HnRNP L has been identified as the main regulator of alternative splicing of CD45 in vitro. The receptor tyrosine phosphatase CD45, which is expressed on all hematopoietic cells, is known for its role in the development and activation of T cells.
First, we have investigated the function of hnRNP L in T cell development and CD45 pre-mRNA splicing in vivo using T cell specific deletion of hnRNP L in mice. The hnRNP L deletion results in aberrant expression of CD45 isoforms, predominantly CD45RA, which is usually absent from the thymus. Ablation of hnRNP L results in a partial block in pre-T cell development at the DN4 stage. This reduction in thymic cellularity is not due to an increase in cell death. In fact, hnRNP L deficient thymocytes demonstrate accelerated proliferation compared to wild-type cells due principally to a hyper-activation of the kinases Lck, Erk1/2 and Akt. Moreover, hnRNP L deletion results in a loss of peripheral T cells. In vitro studies suggest that this loss of peripheral cells is caused by a defect in response to chemokine signals. Since CD45 pre-mRNA splicing cannot explain this phenotype, the identification of hnRNP L targets by RNA-Seq has shown that hnRNP L plays a role in the regulation of alternative splicing of factors involved in actin polymerization.
Secondly, we studied the role of hnRNP L in hematopoiesis using knockout mice in which hnRNP L is conditionally deleted specifically in fetal liver and bone marrow hematopoietic cells. Ablation of hnRNP L reduces the number of cell lineage committed progenitors including the common lymphoid progenitors (CLPs), common myeloid and granulocyte progenitors (CMPs, GMPs) and the megakaryocyte-erythrocyte progenitors (MEPs) as well as the mature hematopoietic cells. In contrast to multipotent progenitors (MPPs) that are affected by the absence of hnRNP L, the hematopoietic stem cell (HSC) population is not reduced. In fact, HSCs from hnRNP L deleted mice demonstrate increased cell cycling. However, hnRNP L deficient HSCs express high levels of Annexin V and CD95, which suggests an increased cell death. As for the thymus, a RNA-Seq analysis of fetal livers revealed different targets of hnRNP L among gene categories related to cell death, DNA damage responses and cell adhesion that may explain the phenotype observed in the hnRNP L deficient HSCs.
These results suggest that hnRNP L and alternative splicing are essential for the survival and maintenance of the differentiation potential of HSCs. HnRNP L is also crucial for the development of T cells by regulating both their migration and the splicing of CD45.
|
6 |
Hepatitis Delta Virus: Identification of Host Factors Involved in the Viral Life Cycle, and the Investigation of the Evolutionary Relationship Between HDV and Plant ViroidsSikora, Dorota 19 June 2012 (has links)
Hepatitis delta virus (HDV) is the smallest known human RNA pathogen. It requires the human hepatitis B virus (HBV) for virion production and transmission, and is hence closely associated with HBV in natural infections. HDV RNA encodes only two viral proteins - the small and the large delta antigens. Due to its limited coding capacity, HDV needs to exploit host factors to ensure its propagation. However, few human proteins are known to interact with the HDV RNA genome. The current study has identified several host proteins interacting with an HDV-derived RNA promoter by multiple approaches: mass spectrometry of a UV-crosslinked ribonucleoprotein complex, RNA affinity chromatography, and screening of a library of purified RNA-binding proteins. Co-immunoprecipitation, both in vitro and ex vivo, confirmed the interactions of eEF1A1, p54nrb, PSF, hnRNP-L, GAPDH and ASF/SF2 with both polarities of the HDV RNA genome. In vitro transcription assays suggested a possible involvement of eEF1A1, GAPDH and PSF in HDV replication. At least three of these proteins, eEF1A1, GAPDH and ASF/SF2, have also been shown to associate with potato spindle tuber viroid (PSTVd) RNA. Because HDV’s structure and mechanism of replication share many similarities with viroids, subviral helper-independent plant pathogens, I transfected human hepatocytes with RNA derived from PSTVd. Here, I show that PSTVd RNA can replicate in human hepatocytes. I further demonstrate that a mutant of HDV, lacking the delta antigen coding region (miniHDV), can also replicate in human cells. However, both PSTVd and miniHDV require the function of the small delta antigen for successful replication. Our discovery that HDV and PSTVd RNAs associate with similar RNA-processing pathways and translation machineries during their replication provides new insight into HDV biology and its evolution.
|
7 |
Hepatitis Delta Virus: Identification of Host Factors Involved in the Viral Life Cycle, and the Investigation of the Evolutionary Relationship Between HDV and Plant ViroidsSikora, Dorota 19 June 2012 (has links)
Hepatitis delta virus (HDV) is the smallest known human RNA pathogen. It requires the human hepatitis B virus (HBV) for virion production and transmission, and is hence closely associated with HBV in natural infections. HDV RNA encodes only two viral proteins - the small and the large delta antigens. Due to its limited coding capacity, HDV needs to exploit host factors to ensure its propagation. However, few human proteins are known to interact with the HDV RNA genome. The current study has identified several host proteins interacting with an HDV-derived RNA promoter by multiple approaches: mass spectrometry of a UV-crosslinked ribonucleoprotein complex, RNA affinity chromatography, and screening of a library of purified RNA-binding proteins. Co-immunoprecipitation, both in vitro and ex vivo, confirmed the interactions of eEF1A1, p54nrb, PSF, hnRNP-L, GAPDH and ASF/SF2 with both polarities of the HDV RNA genome. In vitro transcription assays suggested a possible involvement of eEF1A1, GAPDH and PSF in HDV replication. At least three of these proteins, eEF1A1, GAPDH and ASF/SF2, have also been shown to associate with potato spindle tuber viroid (PSTVd) RNA. Because HDV’s structure and mechanism of replication share many similarities with viroids, subviral helper-independent plant pathogens, I transfected human hepatocytes with RNA derived from PSTVd. Here, I show that PSTVd RNA can replicate in human hepatocytes. I further demonstrate that a mutant of HDV, lacking the delta antigen coding region (miniHDV), can also replicate in human cells. However, both PSTVd and miniHDV require the function of the small delta antigen for successful replication. Our discovery that HDV and PSTVd RNAs associate with similar RNA-processing pathways and translation machineries during their replication provides new insight into HDV biology and its evolution.
|
8 |
Hepatitis Delta Virus: Identification of Host Factors Involved in the Viral Life Cycle, and the Investigation of the Evolutionary Relationship Between HDV and Plant ViroidsSikora, Dorota January 2012 (has links)
Hepatitis delta virus (HDV) is the smallest known human RNA pathogen. It requires the human hepatitis B virus (HBV) for virion production and transmission, and is hence closely associated with HBV in natural infections. HDV RNA encodes only two viral proteins - the small and the large delta antigens. Due to its limited coding capacity, HDV needs to exploit host factors to ensure its propagation. However, few human proteins are known to interact with the HDV RNA genome. The current study has identified several host proteins interacting with an HDV-derived RNA promoter by multiple approaches: mass spectrometry of a UV-crosslinked ribonucleoprotein complex, RNA affinity chromatography, and screening of a library of purified RNA-binding proteins. Co-immunoprecipitation, both in vitro and ex vivo, confirmed the interactions of eEF1A1, p54nrb, PSF, hnRNP-L, GAPDH and ASF/SF2 with both polarities of the HDV RNA genome. In vitro transcription assays suggested a possible involvement of eEF1A1, GAPDH and PSF in HDV replication. At least three of these proteins, eEF1A1, GAPDH and ASF/SF2, have also been shown to associate with potato spindle tuber viroid (PSTVd) RNA. Because HDV’s structure and mechanism of replication share many similarities with viroids, subviral helper-independent plant pathogens, I transfected human hepatocytes with RNA derived from PSTVd. Here, I show that PSTVd RNA can replicate in human hepatocytes. I further demonstrate that a mutant of HDV, lacking the delta antigen coding region (miniHDV), can also replicate in human cells. However, both PSTVd and miniHDV require the function of the small delta antigen for successful replication. Our discovery that HDV and PSTVd RNAs associate with similar RNA-processing pathways and translation machineries during their replication provides new insight into HDV biology and its evolution.
|
Page generated in 0.0288 seconds