Spelling suggestions: "subject:"home diameter"" "subject:"hope diameter""
1 |
A New Analytical Model for Tool Life in Metal StampingSyed, Abdul Vali 05 1900 (has links)
<p> Tool life during the precision stamping of stainless steel sheet (AISI 301) has been studied with particular emphasis on reduction in the punch diameter and part hole size due to tool wear. Two analytical models for predicting tool life in terms of number of quality parts that could be stamped between two re-grindings have been proposed using a combination of Archard's wear model and punching force. The proposed tool life models have been verified by experiment trials with a round M2 punch and die. The trials were carried out on a precision
progressive die in an industrial environment.</p> <p> The first tool life model calculates the pierced hole diameter variation for a given tool from sheet material properties and gives an estimation of number of parts that could be stamped for a given tolerance on a hole size. The second tool life model calculates number of parts with respect to the allowed burr height. Both
of the proposed models are derived using sheet material properties such as sheet thickness, strength coefficient (K), strain hardening index (n) and material elongation (A); process parameters such as die clearance and friction coefficient; punch characteristics such as normalized wear rate, punch diameter and punch edge radius. Finite element analysis was also employed to simulate the hole piercing process to predict burr height. The results from the proposed tool life models, FE modeling and the experiments are in good agreement.</p> / Thesis / Master of Applied Science (MASc)
|
2 |
Estimação do diâmetro e rugosidade em um processo de furação utilizando multi sensores e redes neurais artificiais /Cruz, Carlos Eduardo Dorigatti. January 2010 (has links)
Orientador: Paulo Roberto de Aguiar / Banca: José Alfredo Covolan Ulson / Banca: Alisson Rocha Machado / Resumo: A crescente competitividade do mercado, exigência por qualidade, padronização cada vez superior a necessidade de redução do desperdícios trazem cada vez mais a automação às indústrias. Por suas características, os processos automatizados podem ser melhorados com a utilização de métodos de controle e supervisão e, neste campo, a utilização de sensores e redes neurais artificiais têm cada vez mais destaque em pesquisa. No processo de furação, estudos relatam a aplicação bem sucedida destas técnicas na determinação do fim da vida de ferramentas, contudo, em muitas aplicações, apenas o controle do desgaste da broca não é suficiente para garantir a qualidade do produto. Diâmetro do furo usinado, rugosidade e a formação de rebarbas são alguns exemplos de importantes resultados do processo que não dependem exclusivamente da condição da ferramenta de corte, neste âmbito, estudos dedicados ao controle destas variáveis são limitados, senão inexistentes. Desta forma, este estudo foi conduzido buscando gerar uma contribuição à supervisão do processo de furação com foco na estimação do diâmetro e rugosidade do furo usinado. Utilizando um sistema multi sensores instalados em uma máquina ferramenta e corpus de prova compostos por uma liga de titânio seguida de uma liga de alumínio, registraram-se os sinais dos sensores durante o corte para variados parâmetros de usinagem. Os dados coletados serviram de entrada a uma rede neural artificial, que foi treinada com os valores de diâmetro e rugosidade medidos parte das amostras. Depois do treinamento, a rede capacitou-se a estimar os valores de diâmetro e rugosidade média a partir dos sinais coletados somados aos parâmetros de corte utilizados na concepção do furo. Os erros dos processo foram então calculados da diferença entre os valores medidos e as saídas obtidas. Os resultados demonstraram alta capacidade da rede em determinar as viariáveis desejadas / Abstract: The growing market competitiveness, product quality requirements and just in time production concept is bringing every time more automation to manufacturing industries. Productivity and quality in machining process can be improved by using monitoring and controlling methods. Along the last decades, sensors and Artificial Neural Network have been successfully utilized in many drill wear monitoring systems. However, in many industrial fields, to supervise the tool wear is not enough to assure the product qualities. Roughnessm burr formation and hole diameter are some examples of important process results does not exclusively depend on the tool condition and in this area of knowledge the number of studies is limited or inexistent. Thus, this work brings a contribution on drilling process monitoring where the target was to determine the hole diameter and roughness using a multi-sensor system and artificial neural network. The speciments used were composed by a titanium alloy and aluminum alloy plates. The sensors were installed in a machine tool and the process was accomplished using several drilling parameters. The acquired sensors data were used a input in an artificial neural network which was trained with the roughness and diameter measured in some samples. After trained, the system was qualified to output the expected variables from the input signals. To calculate the errors these output values were compared with the samples measured. The results showed efficiency of the system in determining the roughness and hole diameters as the obtained errors can be considered low or neigligible for the majority of drilling industrial application / Mestre
|
3 |
Assessment Of Velocity Of Detonation At Kumtor Open Pit Gold MineDuzgun, Ozkan 01 September 2011 (has links) (PDF)
One of the most important properties of an explosive is its velocity of detonation
(VOD). It is essential that the explosive should detonate at its optimum rate and
release sufficient detonation pressure to get good fragmentation under the existing
field conditions.
The main objectives of this research study are to investigate the effects of explosive
type, blast hole diameter, and degree of confinement on the VOD of bulk ANFO
and bulk emulsion in Kumtor Open Pit Gold Mine. In this study, the continuous
resistance wire method is employed to measure in-situ VOD of both bulk ANFO
and bulk emulsion. The VOD values are measured for different hole diameters and
under different confinements for both explosives. The ideality of bulk ANFO and
bulk emulsion is calculated by comparing the in-situ measured VOD&rsquo / s and their
ideal detonation values. It is found that the VOD of both explosives increases as the
blast hole diameter and the degree of confinement increases. In addition to this,
VOD of bulk ANFO decreases when it gets wet in the blast hole. Another finding is
that, proportion of bulk emulsion ingredients has influence on its VOD. This research study provides a good understanding to use suitable explosive in existing
rock conditions in Kumtor Open Pit Gold Mine.
|
4 |
Estimação do diâmetro e rugosidade em um processo de furação utilizando multi sensores e redes neurais artificiaisCruz, Carlos Eduardo Dorigatti [UNESP] 30 July 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:34Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-07-30Bitstream added on 2014-06-13T18:08:32Z : No. of bitstreams: 1
cruz_ced_me_bauru.pdf: 2306291 bytes, checksum: 490ef2d600c46e48d97b175d02746256 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A crescente competitividade do mercado, exigência por qualidade, padronização cada vez superior a necessidade de redução do desperdícios trazem cada vez mais a automação às indústrias. Por suas características, os processos automatizados podem ser melhorados com a utilização de métodos de controle e supervisão e, neste campo, a utilização de sensores e redes neurais artificiais têm cada vez mais destaque em pesquisa. No processo de furação, estudos relatam a aplicação bem sucedida destas técnicas na determinação do fim da vida de ferramentas, contudo, em muitas aplicações, apenas o controle do desgaste da broca não é suficiente para garantir a qualidade do produto. Diâmetro do furo usinado, rugosidade e a formação de rebarbas são alguns exemplos de importantes resultados do processo que não dependem exclusivamente da condição da ferramenta de corte, neste âmbito, estudos dedicados ao controle destas variáveis são limitados, senão inexistentes. Desta forma, este estudo foi conduzido buscando gerar uma contribuição à supervisão do processo de furação com foco na estimação do diâmetro e rugosidade do furo usinado. Utilizando um sistema multi sensores instalados em uma máquina ferramenta e corpus de prova compostos por uma liga de titânio seguida de uma liga de alumínio, registraram-se os sinais dos sensores durante o corte para variados parâmetros de usinagem. Os dados coletados serviram de entrada a uma rede neural artificial, que foi treinada com os valores de diâmetro e rugosidade medidos parte das amostras. Depois do treinamento, a rede capacitou-se a estimar os valores de diâmetro e rugosidade média a partir dos sinais coletados somados aos parâmetros de corte utilizados na concepção do furo. Os erros dos processo foram então calculados da diferença entre os valores medidos e as saídas obtidas. Os resultados demonstraram alta capacidade da rede em determinar as viariáveis desejadas / The growing market competitiveness, product quality requirements and just in time production concept is bringing every time more automation to manufacturing industries. Productivity and quality in machining process can be improved by using monitoring and controlling methods. Along the last decades, sensors and Artificial Neural Network have been successfully utilized in many drill wear monitoring systems. However, in many industrial fields, to supervise the tool wear is not enough to assure the product qualities. Roughnessm burr formation and hole diameter are some examples of important process results does not exclusively depend on the tool condition and in this area of knowledge the number of studies is limited or inexistent. Thus, this work brings a contribution on drilling process monitoring where the target was to determine the hole diameter and roughness using a multi-sensor system and artificial neural network. The speciments used were composed by a titanium alloy and aluminum alloy plates. The sensors were installed in a machine tool and the process was accomplished using several drilling parameters. The acquired sensors data were used a input in an artificial neural network which was trained with the roughness and diameter measured in some samples. After trained, the system was qualified to output the expected variables from the input signals. To calculate the errors these output values were compared with the samples measured. The results showed efficiency of the system in determining the roughness and hole diameters as the obtained errors can be considered low or neigligible for the majority of drilling industrial application
|
Page generated in 0.0846 seconds