• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 896
  • 78
  • 51
  • 38
  • 37
  • 16
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 1244
  • 566
  • 566
  • 566
  • 550
  • 549
  • 439
  • 385
  • 360
  • 338
  • 321
  • 316
  • 315
  • 308
  • 297
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Wind, sea ice, inertial oscillations and upper ocean mixing in Marguerite Bay, Western Antarctic Peninsula : observations and modeling

Hyatt, Jason January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references. / Two years of moored oceanographic and automatic weather station data which span the winter ice seasons of 2001-2003 within Marguerite Bay on the western Antarctic Peninsula (wAP) shelf were collected as part of the Southern Ocean Global Ocean Ecosystems Dynamics program. In order to characterize the ice environment in the region, a novel methodology is developed for determining ice coverage, draft and velocity from moored upward-looking acoustic Doppler current profiler data. A linear momentum balance shows the importance of internal ice stresses in the observed motion of the ice pack. Strong inertial, not tidal, motions were observed in both the sea ice and upper ocean. Estimates of upward diapycnal fluxes of heat and salt from the Upper Circumpolar Deep Water to the surface mixed layer indicate almost no contribution from double diffusive convection. A one-dimensional vertical mixed layer model adapted for investigation of mixing beneath an ice-covered ocean indicates that the initial wind event, rather than subsequent inertial shear, causes the majority of the mixing. This work points towards episodic wind-forced shear at the base of the mixed layer coupled with static instability from brine rejection due to ice production as a major factor in mixing on the wAP shelf. / by Jason Hyatt. / Ph.D.
262

Investigations of scalar transfer coefficients in fog during the Coupled Boundary Layers and Air Sea Transfer experiment : a case study / Investigations of scalar transfer coefficients in fog during the CBLAST experiment : a case study

Crofoot, Robert Farrington January 2005 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references (leaves 70-72). / The uncertainty in the determination of the momentum and scalar fluxes remains one of the main obstacles to accurate numerical forecasts in low to moderate wind conditions. For example, latent heat fluxes computed from data using direct covariance and bulk aerodynamic methods show that there is good agreement in unstable conditions when the latent heat flux values are generally positive. However, the agreement is relatively poor in stable conditions, particularly when the moisture flux is directed downward. If the direct covariance measurements are indeed accurate, then they clearly indicate that the bulk aerodynamic formula overestimate the downward moisture flux in stable conditions. As a result, comparisons of the Dalton number for unstable and stable conditions indicate a marked difference in value between the two stability regimes. Investigations done for this thesis used data taken primarily at the Air-Sea Interaction Tower (ASIT) during the Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiment 2003 from the 20-27 August 2003. Other data from the shore based Martha's Vineyard Coastal Observatory (MVCO) and moored buoys in the vicinity of the ASIT were also incorporated. / (cont.) During this eight day period, the boundary layer was often characterized by light winds, a stably stratified surface layer and a swell dominated wave field. Additionally, the advection of warm moist air over cooler water resulted in fog formation and a downward flux of moisture on at least three occasions. Therefore, a primary objective of this thesis is to present a case study to investigate the cause of this shortcoming in the bulk formula under these conditions by examining the physical processes that are unique to these boundary layers. Particular attention will be paid to the behavior of the Dalton number in a stable marine atmospheric boundary layer under foggy conditions using insights derived from the study of fog formation and current flux parameterization methods. / by Robert Farrington Crofoot. / S.M.
263

Verification of numerical models for hydrothermal plume water through field measurements at TAG

Wichers, Sacha January 2005 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references (p. 63-65). / Hydrothermal vents discharge superheated, mineral rich water into our oceans, thereby providing a habitat for exotic chemosynthetic biological communities. Hydrothermal fluids are convected upwards until they cool and reach density equilibrium, at which point they advect laterally with the current. The neutrally buoyant plume layer can have length scales on the order of several kilometers, and it therefore provides the best means to detect the presence of vent fields on the seafloor, which typically have length scales on the order of a few meters. This thesis uses field measurements of the velocity, temperature and particulate anomalies associated with the TAG hydrothermal plume to demonstrate that tidal currents exert a strong impact on the plume shape, and to provide new constraints on the thermal power of the TAG hydrothermal system. The results show that the power output of the TAG system is on the order of 6000 MW, which is up to two orders of magnitude greater than previous estimates, and that there is considerably more entrainment than had previously been assumed. / by Sacha Wichers. / S.M.
264

Distribution, patchiness, and behavior of Antarctic zooplankton, assessed using multi-frequency acoustic techniques

Lawson, Gareth L January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (p. 297-311). / The physical and biological forces that drive zooplankton distribution and patchiness in an antarctic continental shelf region were examined, with particular emphasis on the Antarctic krill, Euphausia superba. This was accomplished by the application of acoustic, video, and environmental sensors during surveys of the region in and around Marguerite Bay, west of the Antarctic Peninsula, in the falls and winters of 2001 and 2002. An important component of the research involved the development and verification of methods for extracting estimates of ecologically-meaningful quantities from measurements of scattered sound. The distribution of acoustic volume backscattering at the single frequency of 120 kHz was first examined as an index of the overall biomass of zooplankton. Distinct spatial and seasonal patterns were observed that coincided with advective features. Improved parameterization was then achieved for a theoretical model of Antarctic krill target strength, the quantity necessary in scaling measurements of scattered sound to estimates of abundance, through direct measurement of all necessary model parameters for krill sampled in the study region and survey period. / (cont.) Methods were developed for identifying and delineating krill aggregations, allowing the distribution of krill to be distinguished from that of the overall zooplankton community. Additional methods were developed and verified for estimating the length, abundance, and biomass of krill in each acoustically-identified aggregation. These methods were applied to multi-frequency acoustic survey data, demonstrating strong seasonal, inter-annual, and spatial variability in the distribution of krill biomass. Highest biomass was consistently associated with regions close to land where temperatures at depth were cool. Finally, the morphology, internal structure, and vertical position of individual krill aggregations were examined. The observed patterns of variability in aggregation characteristics between day and night, regions of high versus low food availability, and in the presence or absence of predators, together reinforced the conclusion that aggregation and diel vertical migration represent strategies to avoid visual predators, while also allowing the krill access to shallowly-distributed food resources. The various findings of this work have important implications to the fields of zooplankton acoustics and Antarctic krill ecology, especially in relation to the interactions of the krill with its predators. / by Gareth L. Lawson. / Ph.D.
265

Influence of grain size evolution and water content on the seismic structure of the oceanic upper mantle

Elsenbeck, James R January 2007 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references (p. 43-45). / Grain size is an important material property that has significant effects on the viscosity, dominant deformation mechanism, attenuation, and shear wave velocity of the oceanic upper mantle. Several studies have investigated the kinetics of grain size evolution, but have yet to incorporate these evolution equations into large-scale flow models of the oceanic upper mantle. We construct self-consistent 1.5-D steady-state Couette flow models for the oceanic upper mantle to constrain how grain size evolves with depth assuming a composite diffusion-dislocation creep rheology. We investigate the importance of water content by examining end-member models for a dry, wet, and dehydrated mantle (with dehydration above -60-70 km depth). We find that grain size increases with depth, and varies with both plate age and water content. Specifically, the dehydration model predicts a grain size of -11 mm at a depth of 150 km for 75 Myr-old oceanic mantle. This results in a viscosity of -1019 Pa s, consistent with estimates from geoid and glacial rebound studies. We also find that deformation is dominated by dislocation creep beneath -60-70 km depth, in agreement with observations of seismic anisotropy in the oceanic upper mantle. The calculated grain size profiles are input into a Burger's model system to calculate seismic quality factor (Q) and shear wave velocity (Vs). For ages older than 50 Myrs, we find that Q and Vs predicted by the dehydration case best match seismic reference models for Q and the low seismic shear wave velocity zone (LVZ) observed in the oceanic upper mantle. / by James R. Elsenbeck, II. / S.M.
266

Advances in the visualization and analysis of boundary layer flow in swimming fish

Anderson, Erik J January 2005 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references (p. 239-244). / In biology, the importance of fluid drag, diffusion, and heat transfer both internally and externally, suggest the boundary layer as an important subject of investigation, however, the complexities of biological systems present significant and unique challenges to analysis by experimental fluid dynamics. In this investigation, a system for automatically profiling the boundary layer over free-swimming, deforming bodies was developed and the boundary layer over rigid and live mackerel, bluefish, scup and eel was profiled. The profiling system combined robotics, particle imaging velocimetry, a custom particle tracking code, and an automatic boundary layer analysis code. Over 100,000 image pairs of flow in the boundary layer were acquired in swimming fish alone, making spatial and temporal ensemble averaging possible. A flat plate boundary layer was profiled and compared to known laminar and turbulent boundary layer theory. In general, profiles resembled those of Blasius for sub-critical length Reynolds numbers, Rex. Transition to a turbulent boundary layer was observed near the expected critical Rex and subsequent profiles agreed well with the law of the wall. The flat plate analysis demonstrated that the particle tracking and boundary layer analysis algorithms were highly accurate. / (cont.) In rigid fish, separation of flow was clearly evident and the boundary layer transitioned to turbulent at lower Rex than in swimming fish and the flat plate. Wall shear stress, [tao]o, forward of separation was slightly higher than flat plate values. Friction drag in rigid and swimming fish was determined by integrating [tao]o over the surface of the fish. The analysis was facilitated by the definition of the relative local coefficient of friction. In general, there was no significant difference in friction drag between the rigid-body and swimming cases. In swimming, separation was, on average, delayed. Therefore, pressure drag was estimated on the basis of thickness ratio and used to calculate an upper-bound total drag on a swimming fish. Total drag was used to determine the required muscle power output during swimming and compare that with existing muscle power data. [tau]o and boundary layer thickness oscillated with undulatory phase. The magnitude of oscillation appears to be linked to body wave amplitude. / by Erik J. Anderson. / Ph.D.
267

Orchestration : the movement and vocal behavior of free-ranging Norwegian killer whales (Orcinus orca) / Movement and vocal behavior of free-ranging Norwegian killer whales (Orcinus orca)

Shapiro, Ari Daniel January 2008 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2008. / Includes bibliographical references. / Studying the social and cultural transmission of behavior among animals helps to identify patterns of interaction and information content flowing between individuals. Killer whales are likely to acquire traits culturally based on their population-specific feeding behaviors and group-distinctive vocal repertoires. I used digital tags to explore the contributions of individual Norwegian killer whales to group carousel feeding and the relationships between vocal and non-vocal activity. Periods of tail slapping to incapacitate herring during feeding were characterized by elevated movement variability, heightened vocal activity and call types containing additional orientation cues. Tail slaps produced by tagged animals were identified using a rapid pitch change and occurred primarily within 20m of the surface. Two simultaneously tagged animals maneuvered similarly when tail slapping within 60s of one another, indicating that the position and composition of the herring ball influenced their behavior. Two types of behavioral sequence preceding the tight circling of carousel feeding were apparent. First, the animals engaged in periods of directional swimming. They were silent in 2 of 3 instances, suggesting they may have located other foraging groups by eavesdropping. Second, tagged animals made broad horizontal loops as they dove in a manner consistent with corralling. All 4 of these occasions were accompanied by vocal activity, indicating that this and tail slapping may benefit from social communication. No significant relationship between the call types and the actual movement measurements was found. Killer whale vocalizations traditionally have been classified into discrete call types. Using human speech processing techniques, I considered that calls are alternatively comprised of shared segments that can be recombined to form the stereotyped and variable repertoire. / (cont.) In a classification experiment, the characterization of calls using the whole call, a set of unshared segments, or a set of shared segments yielded equivalent performance. The shared segments required less information to parse the same vocalizations, suggesting a more parsimonious system of representation. This closer examination of the movements and vocalizations of Norwegian killer whales, combined with future work on ontogeny and transmission, will inform our understanding of whether and how culture plays a role in achieving population-specific behaviors in this species. / by Ari Daniel Shapiro. / Ph.D.
268

Laboratory evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean / Laboratory evaluation of LIBS as a new in situ chemical sensing technique for the deep ocean

Michel, Anna Pauline Miranda, 1976- January 2007 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references. / Present-day expeditionary oceanography is beginning to shift from a focus on short-term ship and submersible deployments to an ocean observatory mode where long-term temporally-focused studies are feasible. As a result, a critical need for in situ chemical sensors is evolving. New sensors take a significant amount of time to develop; thus, the evaluation of techniques in the laboratory for use in the ocean environment is becoming increasingly important. Laser-induced breakdown spectroscopy (LIBS) possesses many of the characteristics required for such in situ chemical sensing, and is a promising technique for field measurements in extreme environments. Although many LIBS researchers have focused their work on liquid jets or surfaces, little attention has been paid to bulk liquid analysis, and especially to the effect of oceanic pressures on LIBS signals. In this work, laboratory experiments validate the LIBS technique in a simulated deep ocean environment to pressures up to 2.76 x 10⁷ Pa. A key focus of this work is the validation that select elements important for understanding hydrothermal vent fluid chemistry (Na, Ca, Mn, Mg, K, and Li) are detectable using LIBS. A data processing scheme that accurately deals with the extreme nature of laser-induced plasma formation was developed that allows for statistically accurate comparisons of spectra. The use of both single and double pulse LIBS for high pressure bulk aqueous solutions is explored and the system parameters needed for the detection of the key analytes are optimized. Using both single and double pulse LIBS, the limits of detection were found to be higher than expected as a result of the spectrometer used in this experimentation. However, the results of this validation show that LIBS possesses the characteristics to be a viable chemical sensing method for in situ analyte detection in high pressure environments like the deep ocean. / by Anna Pauline Miranda Michel. / Ph.D.
269

Estimation and tracking of rapidly time-varying broadband acoustic communication channels

Li, Weichang, 1972- January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (p. 197-206). / This thesis develops methods for estimating wideband shallow-water acoustic communication channels. The very shallow water wideband channel has three distinct features: large dimension caused by extensive delay spread; limited number of degrees of freedom (DOF) due to resolvable paths and inter-path correlations; and rapid fluctuations induced by scattering from the moving sea surface. Traditional LS estimation techniques often fail to reconcile the rapid fluctuations with the large dimensionality. Subspace based approaches with DOF reduction are confronted with unstable subspace structure subject to significant changes over a short period of time. Based on state-space channel modeling, the first part of this thesis develops algorithms that jointly estimate the channel as well as its dynamics. Algorithms based on the Extended Kalman Filter (EKF) and the Expectation Maximization (EM) approach respectively are developed. / (cont.) Analysis shows conceptual parallels, including an identical second-order innovation form shared by the EKF modification and the suboptimal EM, and the shared issue of parameter identifiability due to channel structure, reflected as parameter unobservability in EKF and insufficient excitation in EM. Modifications of both algorithms, including a two-model based EKF and a subspace EM algorithm which selectively track dominant taps and reduce prediction error, are proposed to overcome the identifiability issue. The second part of the thesis develops algorithms that explicitly find the sparse estimate of the delay-Doppler spread function. The study contributes to a better understanding of the channel physical constraints on algorithm design and potential performance improvement. It may also be generalized to other applications where dimensionality and variability collide. / by Weichang Li. / Ph.D.
270

Large-area visually augmented navigation for autonomous underwater vehicles

Eustice, Ryan M January 2005 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 2005. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references (p. 173-187). / This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting the inertial sensor information that is routinely available on such platforms. We adopt a systems-level approach exploiting the complementary aspects of inertial sensing and visual perception from a calibrated pose-instrumented platform. This systems-level strategy yields a robust solution to underwater imaging that overcomes many of the unique challenges of a marine environment (e.g., unstructured terrain, low-overlap imagery, moving light source). Our large-area SLAM algorithm recursively incorporates relative-pose constraints using a view-based representation that exploits exact sparsity in the Gaussian canonical form. This sparsity allows for efficient O(n) update complexity in the number of images composing the view-based map by utilizing recent multilevel relaxation techniques. We show that our algorithmic formulation is inherently sparse unlike other feature-based canonical SLAM algorithms, which impose sparseness via pruning approximations. In particular, we investigate the sparsication methodology employed by sparse extended information filters (SEIFs) and offer new insight as to why, and how, its approximation can lead to inconsistencies in the estimated state errors. Lastly, we present a novel algorithm for efficiently extracting consistent marginal covariances useful for data association from the information matrix. / (cont.) In summary, this thesis advances the current state-of-the-art in underwater visual navigation by demonstrating end-to-end automatic processing of the largest visually navigated dataset to date using data collected from a survey of the RMS Titanic (path length over 3 km and 3100 m² of mapped area). This accomplishment embodies the summed contributions of this thesis to several current SLAM research issues including scalability, 6 degree of freedom motion, unstructured environments, and visual perception. / by Ryan M. Eustice. / Ph.D.

Page generated in 0.3468 seconds