Spelling suggestions: "subject:"home."" "subject:"hope.""
511 |
Isotopic constraints on the sources and associations of organic compounds in marine sedimentsWhite, Helen K January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references. / To provide a new perspective on the fate of both natural organic matter and hydrophobic organic contaminants (HOCs) in marine sediments, we have investigated the relationship between radiocarbon (14C) age and the different modes of association in aquatic sediments and soils. Radiocarbon is a sensitive tracer of OM provenance, with variations in its natural abundance reflecting the age and origin of material. The main objective has been to determine the significance of these associations, and to assess how they affect the transport, bioavailability, preservation and residence times of organic compounds in the environment. Our results indicate that the majority of HOCs that persist in marine sediments are solvent-extractable and incorporation into insoluble sediment residues is not quantitatively significant. For pristine sediments, systematic variations in 14C content are observed between different chemically defined sedimentary organic fractions. These variations are dependent on organic matter inputs and/or the affects of diagenesis. Our observations also provide evidence for the protection of labile marine carbon by chemical binding. / (cont.) Finally, the persistence of n-alkanes from biogenic sources compared to those derived from petroleum indicates that protective matrix association can play a crucial role in determining the long-term fate of a compound. Overall, it is clear that both natural organic compounds and HOCs can undergo very different fates depending on their mode of introduction to, and physical disposition in environmental matrices. / by Helen K. White. / Ph.D.
|
512 |
Gulf stream temperature, salinity and transport during the last millenniumLund, David Charles January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2006. / Includes bibliographical references. / Benthic and planktonic foraminiferal [delta]18O ([delta 18Oc) from a suite of well-dated, high-resolution cores spanning the depth and width of the Straits of Florida reveal significant changes in Gulf Stream cross-current density gradient during the last millennium. These data imply that Gulf Stream transport during the Little Ice Age (LIA: 1200-1850 A.D.) was 2-3 Sv lower than today. The timing of reduced flow is consistent with cold conditions in Northern Hemisphere paleoclimate archives, implicating Gulf Stream heat transport in centennial-scale climate variability of the last 1,000 years. The pattern of flow anomalies with depth suggests reduced LIA transport was due to weaker subtropical gyre wind stress curl. The oxygen isotopic composition of Florida Current surface water ([delta]18Ow) near Dry Tortugas increased 0.4%0/ during the course of the Little Ice Age (LIA: -1200-1850 A.D.), equivalent to a salinity increase of 0.8-1.5 psu. On the Great Bahama Bank, where surface waters are influenced by the North Atlantic subtropical gyre, [delta]18Ow increased by 0.3%o during the last 200 years. Although a portion (-O. 1%o) of this shift may be an artifact of anthropogenically-driven changes in surface water [Epsilon]CO2, the remaining [delta]18Ow signal implies a 0.4 to 1 psu increase in salinity after 200 yr BP. / (cont.) The simplest explanation of the [delta]18Ow, data is southward migration of the Atlantic Hadley circulation during the LIA. Scaling of the [delta]18Ow records to salinity using the modern low-latitude 180,w-S slope produces an unrealistic reversal in the salinity gradient between the two sites. Only if [delta]18Ow is scaled to salinity using a high-latitude [delta]18Ow-S slope can the records be reconciled. Changes in atmospheric 14C paralleled shifts in Dry Tortugas [delta]18Ow, suggesting that variable solar irradiance paced centennial-scale Hadley cell migration and changes in Florida Current salinity during the last millennium. / by David C. Lund. / Ph.D.
|
513 |
Experimental and seismological constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centersDeMartin, Brian J., 1976- January 2007 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references (p. 194-197). / Oceanic spreading centers are sites of magmatic, tectonic, and hydrothermal processes. In this thesis I present experimental and seismological constraints on the evolution of these complex regions of focused crustal accretion and extension. Experimental results from drained, triaxial deformation experiments on partially molten olivine reveal that melt extraction rates are linearly dependent on effective mean stress when the effective mean stress is low and non-linearly dependent on effective mean stress when it is high. Microearthquakes recorded above an inferred magma reservoir along the TAG segment of the Mid-Atlantic Ridge delineate for the first time the arcuate, subsurface structure of a long-lived, active detachment fault. This fault penetrates the entire oceanic crust and forms the high-permeability pathway necessary to sustain long-lived, high-temperature hydrothermal venting in this region. Long-lived detachment faulting exhumes lower crustal and mantle rocks. Residual stresses generated by thermal expansion anisotropy and mismatch in the uplifting, cooling rock trigger grain boundary microfractures if stress intensities at the tips of naturally occurring flaws exceed a critical stress intensity factor. / (cont.) Experimental results coupled with geomechanical models indicate that pervasive grain boundary cracking occurs in mantle peridotite when it is uplifted to within 4 km of the seafloor. Whereas faults provide the high-permeability pathways necessary to sustain high-temperature fluid circulation, grain boundary cracks form the interconnected network required for pervasive alteration of the oceanic lithosphere. This thesis provides fundamental constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers. / by Brian J. deMartin. / Ph.D.
|
514 |
Surface-cycling of rhenium and its isotopesMiller, Christian Alexander January 2009 (has links)
Thesis (Ph. D.)--Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2009. / Includes bibliographical references. / The application of elemental and isotopic metal palaeoredox tracers to the geologic past rests on an understanding of modern metal cycles. This study reevaluates the surface-cycling of Mo and Re in near-surface reservoirs. Revised river averages of Mo and Re are 1.8- and 7.9-fold larger than previous estimates. The river concentrations of 8.0 nmol Mo kg-1 and 11.2 pmol Re kg- (pre-anthropogenic), result in shorter seawater response times of 4.4 x 105 yr ([Tau]Mo) and 1.3 x 105 yr ([Tau]Re pre-anthropogenic). These metals, especially Re, are more sensitive to changing source and sink fluxes than previously thought. Evaluation of Mo and Re concentrations in high temperature fluids from the Manus Basin indicate that Re is essentially absent from the hydrothermal end member and Mo is present at concentrations considerably lower than ambient seawater. The sink fluxes represented by hydrothermal circulation are negligible in comparison to the revised river source fluxes. Anthropogenic contributions to the Re flux to seawater are seen in the high concentrations of certain impacted water samples such as those associated with mining sites. It may also be seen in a significant, variable, Re enrichment feature in the Hudson River estuary. This Re enrichment feature is not the result of estuarine mixing or the remobilization of sediment-hosted Re. On the basis of a Re - SO2- correlation we are able to quantify and correct for the anthropogenic Re, which corresponds to ~33% of the modern river average. This study documents the development of an analytical method for stable Re isotopes. / (cont.) Though complicated by analyte requirements and 187Re 1870s decay, Re isotope measurements have a reproducibility of ±0.05%o for analyte concentrations of 20 ng Re mL-1. Total Re isotopic variability to date is 0.9%o. This includes 0.3%0 across five commercially available Re products, and 0.5%0 across a black shale weathering profile. 6187Re variability across the weathering profile was systematic with the most weathered samples showing the most significant [delta]187Re depletions. The Re isotopic weathering profile is well described by both two-component mixing and Rayleigh fractionation. There are currently insufficient data to discriminate between the two models. / by Christian Alexander Miller. / Ph.D.
|
515 |
Cenozoic deep-water agglutinated foraminifera in the North Atlantic / North Atlantic, Cenozoic deep-water agglutinated foraminifera in the. / Deep-water agglutinated foraminifera in the North Atlantic, Cenozoic. / Agglutinated foraminifera in the North Atlantic, Cenozoic deep-water.Kaminski, Michael Anthony January 1988 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 1988. / Vita. / Includes bibliographical references (p. 243-259). / by Michael Anthony Kaminski. / Ph.D.
|
516 |
Magmatism and dynamics of continental breakup in the presence of a mantle plumeKorenaga, Jun, 1970- January 2000 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2000. / Includes bibliographical references (p. 255-270). / This thesis studies the dynamics of mantle melting during continental breakups by geophysical, geochemical, and numerical analyses. The first part focuses on the mantle melting and crustal accretion processes during the formation of the Southeast Greenland margin, on the basis of deep-crustal seismic data. A new seismic tomographic method is developed to jointly invert refraction and reflection travel times for a compressional velocity structure, and a long-wavelength structure with strong lateral heterogeneity is successfully recovered, including 30- to 15-km-thick igneous crust within a 150-km-wide continent-ocean transition zone. A nonlinear Monte Carlo analysis is also conducted to establish the absolute uncertainty of model parameters. The derived crustal structure is first used to resolve the origin of a margin gravity high, with new inversion schemes using both seismic and gravity constraints. Density anomalies producing the gravity high seem to be confined within the upper crust, not in the lower crust as suggested for other volcanic margins. A new robust framework is then developed for the petrological interpretation of the velocity structure of igneous crust, and the thick igneous crust formed at the continentocean transition zone is suggested to have resulted from vigorous active upwelling of mantle with only somewhat elevated potential temperature. In the second part, the nature of mantle melting during the formation of the North Atlantic igneous province is studied on the basis of the major element chemistry of erupted lavas. A new fractionation correction scheme based on the Ni concentrations of mantle olivine is used to estimate primary melt compositions, which suggest that this province is characterized by a large degree of major element source heterogeneity. In the third part, the nature of preexisting sublithospheric convection is investigated by a series of finite element analyses, because the strength of such convection is important to define the "normal" state of mantle, the understanding of which is essential to identify any anomalous behavior of mantle such as a mantle plume. The results suggest that small-scale convection is likely in normal asthenosphere, and that the upwelling velocity in such convection is on the order of 1- 10 cm/yr. / by Jun Korenaga. / Ph.D.
|
517 |
Ecology and population structure of vibrionaceae in the coastal oceanPreheim, Sarah Pacocha January 2010 (has links)
Thesis (Ph.D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; and the Woods Hole Oceanographic Institution), 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Extensive genetic diversity has been discovered in the microbial world, yet mechanisms that shape and maintain this diversity remain poorly understood. This thesis investigates to what extent populations of the gamma-proteobacterial family, Vibrionaceae, are ecologically specialized by investigating the distribution across a wide range of environmental categories, such as marine invertebrates or particles in the water column. Additionally, it seeks to determine whether in situ population distributions directly result from a competitive advantage over other Vibrio populations. This was investigated by in vitro competition assays on mixtures of native, sterilized particles. Generalist populations were found to dominate the associations with marine invertebrates, consistent with a model of high migration dominated population assembly. A majority of populations occurred broadly within and among the different types of invertebrates sampled, with one population being a near perfect generalist with regard to seasons, host taxa and body regions. High variability across host individuals, consistent with a scenario of stochastic clonal expansion, was especially pronounced in crab and zooplankton samples. Specialization, demonstrated by specific and reproducible association with different particle types in the water column, is more common than specialization within invertebrate hosts. / (cont.) Co-existing Vibrio species show strong preferences for different types of particulate matter in the water column suggesting that competition for limited resources influences their evolution. While populations show different growth profiles on particle derived substrates, relative growth advantages of specialist populations in competition with other Vibrio populations on native particles may not be sufficient to explain observed environmental distributions. Instead, populations may gain an advantage on these particles by colonizing the living plant or zooplankton prior to death and degradation into particulate matter. In summary, although vibrios are known commensals of marine invertebrates, evidence suggests that population structure within animals is fairly weak compared to suspended particles in the water column. This highlights the importance of comparing multiple environmental categories and migration among them to investigate population structure and adaptation. / by Sarah Pacocha Preheim. / Ph.D.
|
518 |
Global isotopic signatures of oceanic island basalts / byOschmann, Lynn A January 1991 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 1991. / Includes bibliographical references (p. 247-253). / Sr, Nd and Pb isotopic analyses of 477 samples representing 30 islands or island groups, 3 seamounts or seamount chains, 2 oceanic ridges and 1 oceanic plateau [for a total of 36 geographic features] are compiled to form a comprehensive oceanic island basalt [OIB] data set. These samples are supplemented by 90 selected mid-ocean ridge basalt [MORB] samples to give adequate representation to MORB as an oceanic basalt end-member. This comprehensive data set is used to infer information about the Earth's mantle. Principal component analysis of the OIB+MORB data set shows that the first three principal components account for 97.5% of the variance of the data. Thus, only four mantle end-member components [EMI, EMII, HIMU and DMM I are required to completely encompass the range of known isotopic values. Each sample is expressed in terms of percentages of the four mantle components, assuming linear mixing. There is significant correlation between location and isotopic signature within geographic features, but not between them, so discrimination analysis of the viability of separating the oceanic islands into those lying inside and outside Hart's (1984, 1988) DUPAL belt is performed on the feature level and yields positive results. A "continuous layer model" is applied to the mantle component percentage data to solve for the spherical harmonic coefficients using approximation methods. Only the degrees 0-5 coefficients can be solved for since there are only 36 features. The EMI and HIMU percentage data sets must be filtered to avoid aliasing. Due to the nature of the data, the coefficients must be solved for using singular value decomposition [SVD], versus the least squares method. The F-test provides an objective way to estimate the number of singular values to retain when solving with SVD. With respect to the behavior of geophysics control data sets, only the degree 2 spherical harmonic coefficients for the mantle components can be estimated with a reasonable level of confidence with this method. Applying a "delta-function model" removes the problem of aliasing and simplifies the spherical harmonic coefficient solutions from integration on the globe to summation over the geographic features due to the properties of deltafunctions. With respect to the behavior of geophysics control data sets, at least the degree 2 spherical harmonic coefficients for the mantle components can be estimated with confidence, if not the degrees 3 and 4 as well. Delta-function model solutions are, to some extent, controlled by the nonuniform feature distribution, while the continuous layer model solutions are not. The mantle component amplitude spectra, for both models, show power at all degrees, with no one degree dominating. The DUPAL components [EMI, EMII and HIMU], for both models, correlate well with the degree 2 geoid, indicating a deep origin for the components since the degrees 2-3 geoid is inferred to result from topography at the core-mantle boundary. The DUPAL and DMM components, for both models, correlate well [and negatively] at degree 3 with the velocity anomalies of the Clayton-Comer seismic tomography model in the 2500-2900 km depth range [immediately above the core mantle boundary]. The EMII component correlates well [and positively] at degree 5 with the velocity anomalies of the Clayton-Comer model in the 700-1290 km depth range, indicating a subduction related origin. Similar positive correlations for the geoid in the upper lower mantle indicate that subducted slabs extend beyond the 670 km seismic discontinuity and support a whole-mantle convection model. / Lynn A. Oschmann. / Ph.D.
|
519 |
Structure and evolution of an oceanic megamullion on the Mid-Atlantic ridge at 27N̊McKnight, Amy R. (Amy Ruth), 1975- January 2001 (has links)
Thesis (S.M.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2001. / Includes bibliographical references (leaves 44-48). / Megamullions in slow-spreading oceanic crust are characterized by smooth "turtle-back" morphology and are interpreted to be rotated footwalls of long-lived detachment faults. Megamullions have been analyzed in preliminary studies, but many questions remain about structural and tectonic details of their formation, in particular how the hanging wall develops in conjugate crust on the opposing side of the rift axis. This study compares the structure of an off-axis megamullion complex and its conjugate hanging wall crust on the Mid-Atlantic Ridge near 27 0N. Two megamullion complexes, an older (Ml) and younger (M2), formed successively on the west side of the rift axis in approximately the same location within one spreading segment. Megamullion M1 formed while the spreading segment had only one inside comer on the west flank, and megamullion M2 formed after the segment developed double inside corners west of the axis and double outside corners east of the axis. The older megamullion formed between -22.3 and -20.4 Ma, and the younger megamullion formed between -20.6 and -18.3 Ma; they are presently -200-300 km off-axis. Reconstruction poles of plate rotation were derived and plate reconstructions were made for periods prior to initiation of the megamullion complex (anomaly 6Ar, -22.6 Ma), after the termination of megamullion Ml and during the development of megamullion M2 (anomaly 5E, -19 9 Ma), and shortly following the termination of megamullion M2 (anomaly 5C, -17.6 Ma). These reconstructions were used to compare morphological and geophysical features of both flanks at each stage of the megamullions' development. Megamullion Ml's breakaway occurred at -22.3 Ma and slip along this detachment fault continued and propagated northward at -20.6 Ma to form the northern portion of M2. The exhumed footwall of megamullion M1 has weak spreading-parallel lineations interpreted as mullion structures on its surface, and it forms an elevated plateau between the enclosing segment boundaries (non-transform discontinuities). There was an expansion southward of the detachment fault forming megamullion M2 at -20.1 Ma. It either cut a new detachment fault through megamullion Ml, stranding a piece of megamullion Ml on the conjugate side (east flank), or it linked into the active detachment fault that was forming megamullion M1 or propagated into its hanging wall. The expanded detachment of megamullion M2 and the termination of megamullion M1 occurred during a time when the enclosing spreading segment roughly doubled in length and formed two inside corners. Megamullion M2 developed prominent, high-amplitude (-600 m) mullion structures that parallel the spreading direction for more than 20 km at each inside corner. Its detachment fault was abandoned - 18.6 Ma in the south and ~18.3 Ma in the north ... / by Amy R. McKnight. / S.M.
|
520 |
Monthly variability in upper ocean biogeochemistry due to mesoscale eddy activity in the Saragasso SeaSweeney, Erin N. (Erin Nicole), 1971- January 2001 (has links)
Thesis (S.M.)--Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2001. / Includes bibliographical references (leaves 65-72). / A comparison of monthly biogeochemical measurements made from 1993 to 1995, combined with hydrography and satellite altimetry, was used to observe the impacts of nine eddy events on primary productivity and particle flux in the Sargasso Sea. Measurements of primary production, thorium-234 flux, nitrate+nitrite, and photosynthetic pigments made at the US JGOFS Bermuda Atlantic Time-series Study (BATS) site were used. During the three years of this study, four out of six high thorium- 234 flux events over 1000 dpm/m 2/d occurred during the passage of an eddy. Primary production nearly as high as the spring bloom maximum was observed in two modewater eddies (May 1993 and July 1995). The 1994 spring bloom at BATS was suppressed by the passage of an anticyclone. Distinct phytoplankton community shifts were observed in mode-water eddies, which had an increased percentage diatoms and dinoflagelletes, and in cyclones, which had an increased percentage cyanobacteria (excluding Prochlorococcus). The difference in the observations of mode-water eddies and cyclones may result from the age of the eddy, which was very important to the biological response. In general, eddies that were one to two months old elicited a large biological response; eddies that were three months old may show a biological response and were accompanied by high thorium flux measurements; eddies that were four months old or older did not show a biological response or high thorium flux. Our conceptual model depicting the importance of temporal changes during eddy upwelling and decay fit the observations well in all 7 upwelling eddies. Additional information is needed to determine the importance of deeper mixed layers and winter mixing to the magnitude of the eddy impacts. Also, sampling generally captured only the beginning, end, and /or edge of an eddy due to the monthly to semi-monthly frequency of the measurements made at BATS. Lagrangian studies, higher resolution time-series, and/or more spatial coverage is needed to provide additional information for improved C and N budgets in the Sargasso Sea and to complete our understanding of the temporal changes that occur in an eddy. / by Erin N. Sweeney. / S.M.
|
Page generated in 0.0557 seconds