• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An active core fiber optic gas sensor using a photonic crystal hollow core fiber as a transducer

Tipparaju, Venkata Satya Sai Sarma 11 August 2007 (has links)
An active core fiber optic gas sensing technique has been developed by using a photonic crystal (PC) hollow core fiber (HCF) as a transducer and a tunable diode laser as a light source for multi-gas sensing. The intrinsic optical absorption signal of an analyte molecule in the near nfrared region is monitored for sensing C2H2,CO2 and NH3. Although the overtone absorptions are known to have low absorption cross-sections, this sensor can detect these gas components down to the parts-per-million (ppm) level by using a 1-meter hollow core fiber as a transducer. This sensor is an example of application of PC-HCF to gas sensor design. The sensitivity of this gas sensing technique can be improved by introducing periodic openings along the fiber, decreasing the hole diameter down to 0.5 mm and using a longer hollow optical fibers. Other advantages of this gas sensing technique include less interference, fast response and potential applications like high temperature, remote and corrosive gas sensing.
2

Using saturated absorption spectroscopy on acetylene-filled hollow-core fibers for absolute frequency measurements

Knabe, Kevin January 1900 (has links)
Doctor of Philosophy / Department of Physics / Kristan L. Corwin / Current portable near-infrared optical frequency references offer modest accuracy and instability compared to laboratory references. Low pressure reference cells are necessary to realize features narrower than the Doppler broadened overtone transitions, and most setups to date have occurred in free-space. Hollow-core photonic crystal fibers offer a potential alternative to free-space setups through their small cores (~10’s of µm) and low-loss guidance. Furthermore, HC-PCF can be made into fiber cells that could be directly integrated into existing telecommunications networks. Efforts were made to fabricate these fiber cells with a low pressure of molecules trapped inside, but this has proven to be quite challenging. Therefore, investigation of these fibers is conducted by placing the ends of the fiber inside vacuum chambers loaded with acetylene (12C2H2). The linewidths of several P branch transitions (near 1.5 µm) are investigated as a function of acetylene pressure and optical pump power in three different HC-PCFs. Frequency modulation spectroscopy is then implemented on the acetylene-filled HC-PCF to generate sub-Doppler dispersion features that are useful for frequency stabilization using standard servo electronics. Instability and accuracy of this near-IR optical reference were then determined by analysis of heterodyne experiments conducted with frequency combs referenced to a GPS-disciplined rubidium oscillator. The instability and accuracy of this HC-PCF reference are within an order of magnitude of free-space experiments, as expected based on the ratio of linewidths observed in the two experiments. Therefore, HC-PCF has been shown to be suitable for potential frequency references. Further work is necessary to fabricate gas fiber cells with high optical transmission and low molecular contamination.
3

Experimental platform towards in-fibre atom optics and laser cooling / Plateforme expérimentale pour l’optique atomique et refroidissement d'atomes intra-fibre creuse

Adnan, Muhammad 18 December 2017 (has links)
Cette thèse décrit la conception et la réalisation d'une plateforme expérimentale pour le refroidissement par laser et le guidage d’atomes de Rb dans les fibres à cristal photonique à cœur creux (HC-PCF). Cette plateforme a pour but de fournir un système polyvalent pour explorer le refroidissement par laser à l’intérieur des fibres avec l'objectif à plus long terme de réaliser une fibre optique constituée d’un cœur rempli d’atomes froids (micro-cellule photonique). La plateforme a été conçue pour héberger plusieurs expériences sur le guidage d'atomes froids et thermiques ainsi que la spectroscopie dans les HC-PCFs pour répondre à plusieurs questions ouvertes liées par exemple à l'effet de la surface interne des HC-PCFs sur la structure énergétique des atomes ainsi que le piégeage et le refroidissement des atomes. La plateforme comprend une chambre spécifique à vide ultra-élevée (UHV) et un ensemble de lasers pour le refroidissement et le guidage des atomes à l'intérieur du HC-PCF hautement adapté. La chambre UHV a été conçue pour accueillir plusieurs HC-PCFs et deux pièges magnéto-optiques (MOT). Les HC-PCFs ont été conçus et fabriqués avec différents diamètres de cœur, contenu modal et post-traités avec des matériaux différents pour la surface interne du cœur. Par exemple, les diamètres du cœur varient de ~ 30 μm à ~ 80 μm traités avec une couche d'aluminosilicate ou une couche de PDMS afin de fournir un grand espace de paramètres pour évaluer l'effet de la surface sur les atomes confinés dans les fibres. Ainsi, le système a été construit et caractérisé. Le laser de refroidissement/repompage a été stabilisé en fréquence, avec une variance d'Allan de σ(τ)=3,8×10^(-11)/√τ. Avec ce système nous avons généré un MOT avec les deux isotopes du Rb, avec une température de refroidissement faible de l’ordre de 7 μK. La plateforme est maintenant opérationnelle pour entreprendre le premier guidage atomique et explorer la faisabilité du refroidissement des atomes à l'intérieur des HC-PCFs. / This thesis reports on the design and fabrication of an experimental platform for in-fibre laser cooling of Rb and atom optics. By in-fibre laser cooling, we mean the long term aim of laser cooling thermal Rb atoms of a Photonic MicroCell (PMC), and subsequently developing what would be cold-atom photonic crystal fibre (PCF). The platform was designed to harbor several experiments on cold and thermal atom guidance and in-fibre spectroscopy so to address several open questions related for example to the effect of the core inner-wall surface on the atom energy structure and on selective fibre mode excitation for atom trapping and cooling. The completed platform comprises a specific and large ultra-high vacuum (UHV) chamber and a set of lasers for both atom cooling and atom guiding inside highly tailored hollow-core PCF (HC-PCF). The UHV chamber was designed to accommodate several HC-PCFs and two magneto-optical traps (MOT). The HC-PCF were designed, fabricated and post-processed to exhibit different core diameter, modal content and core inner surface material. For example, the mode field diameters range from ~30 µm to ~80 µm for the fundamental Gaussian-like core mode, and the surface materials include pure silica, a layer of Aluminosilicate or a layer of PDMS so to provide a large parameter space in assessing the effect of surface on the fibre-confined atoms. The system has been constructed and characterized. The cooling/repumping laser was frequency-stabilized, with measured Allan variance deviation of σ(τ)=3.8×10^(-11)/√τ. With the system we generated MOT with both isotopes of the Rb atom, with a cooling temperature as low as 7 µK. The platform is now operational to undertake the first atom guidance and explore the feasibility of atom cooling inside a HC-PCF.
4

Hollow core fibre-based gas discharge laser systems and deuterium loading of photonic crystal fibres

Bateman, Samuel January 2015 (has links)
Research towards the development of a gas-discharge fibre laser using noble gases, with target emission wavelengths in the mid-IR. Additional and separate work on gas treatment methods for managing the formation of photo-induced defects in silica glass.
5

Photonic Crystal Fiber as a Robust Raman Biosensor

Khetani, Altaf January 2016 (has links)
This thesis focuses on the investigation and development of an integrated optical biosensor based on enhanced Raman techniques that will provide label-free detection of biomolecules. This is achieved by using hollow core photonic crystal fibers (HC-PCF), nanoparticles, or both. HC-PCF is a unique type of optical fiber, with continuous ‘channels’ of air (typically) running the entire length. The channels serve to confine electromagnetic waves in the core of the fiber, and tailor its transmission properties. Using HC-PCF as a biosensor requires development of a robust technique to fill hollow-core photonic crystal fibers. Though several groups have reported selective filling of HC-PCF’s core, the processes are cumbersome and limit the choice of liquid to avoid multimode behavior. In my Master’s thesis, I presented a simple technique to non-selectively fill all the HC-PCF channels with samples. The non-selective filling preserves the photonic bandgap property of the fiber, and yields an extremely strong interaction of light and the sample that produces considerable enhancement of the Raman signal from the analyte. Up to now, non-selective filling was accomplished through capillary action and it delivered a Raman signal enhancement of approximately 30-fold, which is not sensitive enough to detect biomolecules at the clinical level. Moreover, there were issues of reliability and reproducibility, due to evaporation, filling and coupling light into the fiber. The objective of this PhD research was to overcome these problems by developing a robust optical fiber platform based on Raman spectroscopy that can be used in a clinical setting. I initially focused on heparin, an important blood anti-coagulant that requires precise monitoring and control in patients undergoing cardiac surgery or dialysis. Since the Raman spectra of heparin-serum mixtures exhibits Raman peaks of heparin with poor signal-to-noise ratios, I concentrated on enhancing the heparin Raman signal and filtering out the spectral background of the serum to improve detection sensitivity. Reaching maximum enhancement of the Raman signal required a strong interaction of light and analyte, which can be achieved by using hollow core photonic crystal fiber as I had used in my Master’s research. Using a small piece of HC-PCF I was able to reach an enhancement in the heparin Raman signal of greater than 90-fold. With this degree of enhancement, I was able to successfully detect and monitor heparin in serum at clinical levels, something that had never been accomplished previously. After developing HC-PCF as a Raman signal enhancer, I focused on making the HC-PCF sensor robust, reliable and reusable. This was achieved by integrating the HC-PCF with a differential pressure system that allowed effective filling, draining and refilling of the samples in an HC-PCF, under identical optical conditions. To demonstrate the device’s detection capabilities, various concentrations of aqueous ethanol and isopropanol, followed by different concentrations of heparin and adenosine in serum, were successfully monitored. To further improve the sensitivity of the HC-PCF based Raman sensor, I incorporated surface enhanced Raman scattering (SERS), by introducing nanoparticles into the HC-PCF fibers. The research focused on determining the optimal volume and size of silver nanoparticles to achieve maximum enhancement of the Raman signal in the HC-PCF. The HC-PCF enhanced the Raman signal of Rhodamine 6G (R6G) approximately 90-fold. In addition, the optimal size and volume of AgNP enhanced the Raman signal of R6G approximately 40-fold, leading to a total enhancement of approximately 4,000 in HC-PCF. This was then used to demonstrate the application of a SERS based HC-PCF sensing platform in monitoring adenosine (a clinically important molecule), as well as malignant cells such as leukemia. Finally, I used hollow core crystal fibers to significantly enhance the efficiency of two-photon photochemistry. Although two-photon photochemical reactions are difficult to achieve with a small volume, I accomplished it by using a novel platform of HC-PCF to efficiently execute the two-photon induced photodecarbonylation reaction of cyclopropenone 1, and its conversion to the corresponding acetylene. The simple optical design configuration involved coupling an 800-nm tsunami laser to a short piece of HC-PCF filled with the sample. This allowed me to increase the efficiency of two-photon induced photochemistry by 80-fold, compared to a conventional spectrophotometer cuvette. Thus, this work leads to the use of HC-PCFs to more effectively study two-photon induced photochemistry processes, which was limited due to the difficulty of detecting photochemical events with a small excitation volume.
6

Studies of particle and atom manipulation using free space light beams and photonic crystal fibres

Gherardi, David Mark January 2009 (has links)
Light can exert optical forces on matter. In the macroscopic world these forces are minuscule, but on the microscopic or atomic scale, these forces are large enough to trap and manipulate particles. They may even be used to cool atoms to a fraction of a degree above absolute zero. This thesis details a number of experiments concerned with the optical manipulation of atoms and micron-size particles using free space light beams and photonic crystal fibres. Two atom guiding experiments are described. In the first experiment, a spatial light modulator is used to generate higher blue-detuned azimuthal Laguerre-Gaussian LG) beams, which are annular beams with a hollow core. These LG beams are then used to guide laser cooled rubidium-85 atoms within the dark core over a distance of 30 mm. The second atom guiding experiment involves attempting to guide laser cooled and thermal rubidium atoms through a hollow-core photonic crystal fibre using red-detuned light. Hollow-core photonic crystal fibres are fibres that are able to guide light with low attenuation within a hollow core. For this experiment a hot wire detection system was designed, along with a number of complex vacuum systems. The first dual-beam fibre trap for micron-size particles constructed using endlessly single-mode photonic crystal fibre (ESM-PCF) is described. The characteristics of dual-beam fibre traps are governed by the fibres used. As ESM-PCF has considerably different properties in comparison to conventional single- or multimode fibres, this dual beam ESM-PCF trap exhibits some novel characteristics. I show that the dual beam ESM-PCF trap can form trapping, repulsive and line potentials; an interference-free ‘white light’ trap; and a dual-wavelength optical conveyor belt.
7

Génération de paires de photons corrélés par mélange à quatre ondes spontané dans des fibres microstructurées à coeur liquide / Generation of correlated photon pairs by spontaneous four-wave mixing in liquid-filled hollow-core photonic crystal fibres

Barbier, Margaux 13 November 2014 (has links)
Une technique couramment employée pour développer les sources de paires de photons corrélés indispensables au domaine des télécommunications quantiques repose sur le processus non linéaire de mélange à quatre ondes, qui peut avoir lieu directement dans le cœur d’une fibre optique. Cette architecture fibrée permet de s’adapter au mieux aux besoins des réseaux de communications quantiques (en particulier en minimisant les pertes par couplage lors de la connexion de la source aux autres composants du réseau). L’utilisation d’une fibre microstructurée plutôt que d’une fibre de silice conventionnelle permet d’ajuster les propriétés de dispersion de la fibre et d’optimiser l’efficacité du processus non linéaire. Cependant, les sources fibrées usuelles, à cœur de silice, présentent une limitation majeure : leur pureté quantique est fortement dégradée par la diffusion Raman spontanée, qui survient elle aussi dans le cœur en silice de la fibre. Pour s’affranchir de ce problème, notre idée est de remplacer le cœur en silice par un cœur liquide, en utilisant une fibre microstructurée à cœur creux rempli d’un liquide non linéaire. Nos recherches nous ont ainsi conduits à faire la première démonstration expérimentale de génération de paires de photons corrélés dans une fibre à cœur liquide, et à montrer que, grâce aux propriétés Raman particulières des liquides (dont le spectre Raman se présente en général sous la forme de raies très fines), il était possible de réduire de plusieurs ordres de grandeur le niveau de diffusion Raman spontanée dans la source. Ce travail ouvre donc la voie au développement de sources de paires de photons corrélés fibrées de très haute qualité quantique. / Quantum telecommunication technologies rely on correlated photon pair sources, which are often based on the third-order nonlinear process of spontaneous four-wave mixing in silica-core photonic crystal fibres. A fibred architecture is advantageous because it minimizes the coupling losses between the optical source and the other components of quantum communication networks. Moreover, using a photonic crystal fibre rather than a conventional silica fibre offers the possibility of improving the photon generation (thanks to a small effective core area) and extending the wavelength coverage (thanks to dispersion management through the microstructuration design). However, the performances of silica-core photonic crystal fibre sources are limited in terms of quantum purity, because of the ubiquitous spontaneous Raman scattering process, which is a source of uncorrelated broadband noise photons in silica. We propose an original solution to this Raman problem by replacing the silica core by a liquid core, thanks to a hollow-core photonic crystal fibre filled with a nonlinear liquid. We actually performed the first experimental demonstration of the generation of correlated photon pairs in a liquid-core fibre, and demonstrated that, thanks to the specific Raman properties of liquids (which usually exhibit thin-line Raman spectra), it is possible to reduce the Raman noise level by several orders of magnitude. This work opens the way for the development of high quantum quality correlated photon pair fibred sources.
8

Sources lasers innovantes à base de micro-capsules photoniques et par nano-structuration de milieux gazeux / Innovative laser sources based on pohotonic micro-cells aand by nano-structuration of gaz media

Chafer, Matthieu 19 September 2018 (has links)
Depuis leur avènement, les fibres à cristal photonique à cœur creux ont prouvé leur capacité à convertir des fréquences avec une haute efficacité, notamment en jouant sur le phénomène de diffusion Raman stimulée. Dans le cadre d’un contrat CIFRE entre la société GLOphotonics et l’institut de recherche Xlim, ce projet de thèse a consisté à développer ces fibres afin d’améliorer leurs performances optiques pour cibler deux voies d’applications: une industrielle pour proposer un laser compact multi-ligne dans le visible et dans l’UV et une seconde plus fondamentale pour réaliser un synthétiseur d’onde optique. L’amélioration de ces performances repose sur l’exacerbation de l’inhibition du couplage entre le mode du coeur d’air et les modes de silice de la gaine. Pour cela deux types de micro-structures ont été explorées à savoir une maille Kagomé et une maille tubulaire. Plusieurs fibres ont été alors fabriquées démontrant des performances records sur toute une gamme de longueurs d’onde (8,5 dB/km à 1 µm, 7,7 dB/km à 750 nm, 13,8 dB/ km à 549 nm, et autour de 70 dB/km à 355 nm). Concernant la fonctionnalisation de ces fibres, des micro-capsules photoniques ont été conçues et réalisées permettant à la fois de palier au problème de la perméabilité de la silice au gaz (stabilité de la conversion dépassant 12 mois) et de démontrer une conversion de 26 lignes dans le visible. Un produit industriel nommé CombLas a alors été produit puis appliqué à une étude de cytométrie en flux pour étudier l’influence du taux de répétition du laser de pompe. Ce produit a également été étendu à la gamme spectrale de l’UV avec la génération de 24 lignes entre 225-400 nm. Enfin, des travaux plus fondamentaux ont été réalisés consistant à développer un synthétiseur d’onde optique à base de génération Raman dans ces fibres creuses. Une nouvelle dynamique a été observée démontrant le piégeage de molécules d’hydrogène par un réseau optique auto-assemblé de puits de potentiel ultra-profonds et nanométriques. Cela permis de générer un régime Lamb-Dicke de la diffusion Raman stimulée. Des signatures sub-Doppler usuellement vues dans les atomes froids ont été mesurées avec des largeurs de bandes plus étroites de plus de 5 ordres de grandeurs par rapport à ce qui est prédit dans la littérature. Finalement, cette largeur de bande a été optimisée d’un ordre de grandeur en jouant sur la longueur de la fibre et la pression de l’hydrogène. / Since their advent, hollow-core photonic crystal fibers have proved to be highly efficient for frequency conversion, especially via by playing with stimulated Raman scattering. Within the frame work of a CIFRE contract between the firm GLOphotonics and the Xlim research institute, this thesis project has consisted in developing these fibers to enhance their optical performances, in order to target two different field of applications: an industrial one to offer a a compact multi-line laser in the visible and UV and a second more fundamental one to realize a optical wave synthesizer. The amelioration of these performances relies on the exacerbation of the inhibition of the coupling between the air core mode and the silica cladding modes. Two types of micro-structures have been explored, a Kagomé and a tubular lattice. Several fibers have been fabricated demonstrating record performances on all a wavelength range (8.5 dB/km at 1 µm, 7.7 dB/km at 750 nm, 13.8 dB/km at 549 nm, and around 70 dB/km at 355 nm). Concerning the functionalization of the fibers, photonic micro-cells have been designed and realized enabling to overcome the problem the permeability of silica to gas (conversion stability over 12 months) and demonstrate a conversion to 26 lines in the visible. An industrial product coined CombLas has been made and used for flow cytometry in order to study the influence of the repetition rate of the pump laser. This product has also been extended to the UV range with 24 lines generated between 225-400 nm. Also, more fundamental research has been realized consisting in developing an optical wave synthesizer based on Raman generation in hollow core fibres where a new dynamic has been observed demonstrating the trapping of hydrogen molecules by an auto-assembled optical lattice of ultra-deep and nano-metric potential wells. This configuration has enabled to generate a Lamb-Dicke regime of stimulated Raman scattering. Sub-Doppler signatures usually found in cold atoms have been measured with linewidths narrower than 5 orders of magnitude than what is predicted in the literature. Finally, this linewidth has been optmised of an order of magnitude by plaing on the length of the fiber and the pressure of hydrogen.

Page generated in 0.1015 seconds