Spelling suggestions: "subject:"holomorphe"" "subject:"holomorphic""
1 |
Domains of [Greek letter tau]-holomorphy on a Banach spaceLivadas, Panos E. January 1980 (has links)
Thesis (Ph. D.)--University of Florida, 1980. / Description based on print version record. Typescript. Vita. Includes bibliographical references (leaves 61-62).
|
2 |
Analytic Continuation In Several Complex VariablesBiswas, Chandan 04 1900 (has links) (PDF)
We wish to study those domains in Cn,for n ≥ 2, the so-called domains of holomorphy, which are in some sense the maximal domains of existence of the holomorphic functions defined on them. We demonstrate that this study is radically different from that of domains in C by discussing some examples of special types of domains in Cn , n ≥2, such that every function holomorphic on them extends to strictly larger domains. Given a domain in Cn , n ≥ 2, we wish to construct the maximal domain of existence for the holomorphic functions defined on the given domain. This leads to Thullen’s construction of a domain (not necessarily in Cn)spread overCn, the so-called envelope of holomorphy, which fulfills our criteria. Unfortunately this turns out to beavery abstract space, far from giving us sense in general howa domain sitting in Cn can be constructed which is strictly larger than the given domain and such that all the holomorphic functions defined on the given domain extend to it. But with the help of this abstract approach we can give a characterization of the domains of holomorphyin Cn , n ≥ 2.
The aforementioned characterization is as follows: adomain in Cn is a domain of holomorphy if and only if it is holomorphically convex. However, holomorphic convexity is a very difficult property to check. This calls for other (equivalent) criteria for a domain in Cn , n ≥ 2, to be a domain of holomorphy. We survey these criteria. The proof of the equivalence of several of these criteria are very technical – requiring methods coming from partial differential equations. We provide those proofs that rely on the first part of our survey: namely, on analytic continuation theorems.
If a domain Ω Cn , n ≥ 2, is not a domain of holomorphy, we would still like to explicitly describe a domain strictly larger than Ω to which all functions holomorphic on Ω continue analytically. Aspects of Thullen’s approach are also useful in the quest to construct an explicit strictly larger domain in Cn with the property stated above. The tool used most often in such constructions s called “Kontinuitatssatz”. It has been invoked, without a clear statement, in many works on analytic continuation. The basic (unstated) principle that seems to be in use in these works appears to be a folk theorem. We provide a precise statement of this folk Kontinuitatssatz and give a proof of it.
|
3 |
Geometrische Untersuchungen allgemeiner und einiger spezieller Pseudokonvexer GebieteMüller, Manfred W., January 1975 (has links)
Thesis--Bonn. / Extra t.p. with thesis statement inserted. Includes bibliographical references (p. 66-68).
|
4 |
Geometrische Untersuchungen allgemeiner und einiger spezieller Pseudokonvexer GebieteMüller, Manfred W., January 1975 (has links)
Thesis--Bonn. / Extra t.p. with thesis statement inserted. Includes bibliographical references (p. 66-68).
|
5 |
Some Descriptions Of The Envelopes Of Holomorphy Of Domains in CnGupta, Purvi 03 1900 (has links) (PDF)
It is well known that there exist domains Ω in Cn,n ≥ 2, such that all holomorphic functions in Ω continue analytically beyond the boundary. We wish to study this remarkable phenomenon. The first chapter seeks to motivate this theme by offering some well-known extension results on domains in Cn having many symmetries. One important result, in this regard, is Hartogs’ theorem on the extension of functions holomorphic in a certain neighbourhood of (D x {0} U (∂D x D), D being the open unit disc in C. To understand the nature of analytic continuation in greater detail, in Chapter 2, we make rigorous the notions of ‘extensions’ and ‘envelopes of holomorphy’ of a domain. For this, we use methods similar to those used in univariate complex analysis to construct the natural domains of definitions of functions like the logarithm. Further, to comprehend the geometry of these abstractly-defined extensions, we again try to deal with some explicit domains in Cn; but this time we allow our domains to have fewer symmetries. The subject of Chapter 3 is a folk result generalizing Hartogs’ theorem to the extension of functions holomorphic in a neighbourhood of S U (∂D x D), where S is the graph of a D-valued function Φ, continuous in D and holomorphic in D. This problem can be posed in higher dimensions and we give its proof in this generality. In Chapter 4, we study Chirka and Rosay’s proof of Chirka’s generalization (in C2) of the above-mentioned result. Here, Φ is merely a continuous function from D to itself. Chapter 5 — a departure from our theme of Hartogs-Chirka type of configurations — is a summary of the key ideas behind a ‘non-standard’ proof of the so-called Hartogs phenomenon (i.e., holomorphic functions in any connected neighbourhood of the boundary of a domain Ω Cn , n ≥ 2, extend to the whole of Ω). This proof, given by Merker and Porten, uses tools from Morse theory to tame the boundary geometry of Ω, hence making it possible to use analytic discs to achieve analytic continuation locally. We return to Chirka’s extension theorem, but this time in higher dimensions, in Chapter 6. We see one possible generalization (by Bharali) of this result involving Φ where is a subclass of C (D; Dn), n ≥ 2. Finally, in Chapter 7, we consider Hartogs-Chirka type configurations involving graphs of multifunctions given by “Weierstrass pseudopolynomials”. We will consider pseudopolynomials with coefficients belonging to two different subclasses of C(D; C), and show that functions holomorphic around these new configurations extend holomorphically to D2 .
|
6 |
Using naturally occurring texts as a knowledge acquisition resource for knowledge base design : developing a knowledge base taxonomy on microprocessors /Emero, Michael F. January 1992 (has links)
Report (M.S.)--Virginia Polytechnic Institute and State University. M.S. 1992. / Vita. Abstract. Includes bibliographical references (leaves 67-69). Also available via the Internet.
|
7 |
Algebras of bounded holomorphic functionsFällström, Anders January 1994 (has links)
Some problems concerning the algebra of bounded holomorphic functions from bounded domains in Cn are solved. A bounded domain of holomorphy Q in C2 with nonschlicht i7°°- envelope of holomorphy is constructed and it is shown that there is a point in Q for which Gleason’s Problem for H°°(Q) cannot be solved. If A(f2) is the Banach algebra of functions holomorphic in the bounded domain Q in Cn and continuous on the boundary and if p is a point in Q, then the following problem is known as Gleason’s Problem for A(Q) : Is the maximal ideal in A(Q) consisting of functions vanishing at p generated by (Zl ~Pl) , ■■■ , (Zn - Pn) ? A sufficient condition for solving Gleason’s Problem for A(Q) for all points in Q is given. In particular, this condition is fulfilled by a convex domain Q with Lipi+£-boundary (0 < e < 1) and thus generalizes a theorem of S.L.Leibenzon. One of the ideas in the methods of proof is integration along specific polygonal lines. If Gleason’s Problem can be solved in a point it can be solved also in a neighbourhood of the point. It is shown, that the coefficients in this case depends holomorphically on the points. Defining a projection from the spectrum of a uniform algebra of holomorphic functions to Cn, one defines the fiber in the spectrum over a point as the elements in the spectrum that projects on that point. Defining a kind of maximum modulus property for domains in Cn, some problems concerning the fibers and the number of elements in the fibers in certain algebras of bounded holomorphic functions are solved. It is, for example, shown that the set of points, over which the fibers contain more than one element is closed. A consequence is also that a starshaped domain with the maximum modulus property has schlicht /y°°-envelope of holomorphy. These kind of problems are also connected with Gleason’s problem. A survey paper on general properties of algebras of bounded holomorphic functions of several variables is included. The paper, in particular, treats aspects connecting iy°°-envelopes of holomorphy and some areas in the theory of uniform algebras. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1994, härtill 6 uppsatser</p> / digitalisering@umu
|
8 |
On the time-analytic behavior of particle trajectories in an ideal and incompressible fluid flowHertel, Tobias 22 January 2018 (has links)
This (Diplom-) thesis deals with the particle trajectories of an incompressible and ideal fluid flow in 𝑛 ≥ 2 dimensions. It presents a complete and detailed proof of the surprising fact that the trajectories of a smooth solution of the incompressible Euler equations are locally analytic in time. In following the approach of P. Serfati, a complex ordinary differential equation (ODE) is investigated which can be seen as a complex extension of a partial differential equation, which is solved by the trajectories. The right hand side of this ODE is in fact given by a singular integral operator which coincides with the pressure gradient along the trajectories. Eventually, we may apply the Cauchy-Lipschitz existence theorem involving holomorphic maps between complex Banach spaces in order to get a unique solution for the above mentioned ODE. This solution is
real-analytic in time and coincides with the particle trajectories.
|
9 |
Anti-Specker Properties in Constructive Reverse MathematicsDent, James Edgar January 2013 (has links)
Constructive reverse mathematics is a programme in which non- and semi-constructive principles are classified in accordance with which other principles they imply or are implied by, relative to the framework of Bishop-style constructive mathematics. One such principle that has come under focus in recent years is an antithesis of Specker's theorem (that theorem being a characteristic result of Russian recursive mathematics): this so-called anti-Specker property is intuitionistically valid, and of considerable utility in proving results of real and complex analysis.
We introduce several new weakenings of the anti-Specker property and explore their role in constructive reverse mathematics, identifying implication relationships that they stand in to other notable principles. These include, but are not limited to: variations upon Brouwer's fan theorem, certain compactness properties, and so-called zero-stability properties. We also give similar classification results for principles arising directly from Specker's theorem itself, and present new, direct proofs of related fan-theoretic results.
We investigate how anti-Specker properties, alongside power-series-based arguments, enable us to recover information about the structure of holomorphic functions: in particular, they allow us to streamline a sequence of maximum-modulus theorems.
|
10 |
Envelopes of holomorphy for bounded holomorphic functionsBacklund, Ulf January 1992 (has links)
Some problems concerning holomorphic continuation of the class of bounded holomorphic functions from bounded domains in Cn that are domains of holomorphy are solved. A bounded domain of holomorphy Ω in C2 with nonschlicht H°°-envelope of holomorphy is constructed and it is shown that there is a point in D for which Gleason’s Problem for H°°(Ω) cannot be solved. Furthermore a proof of the existence of a bounded domain of holomorphy in C2 for which the volume of the H°°-envelope of holomorphy is infinite is given. The idea of the proof is to put a family of so-called ”Sibony domains” into the unit bidisk by a packing procedure and patch them together by thin neighbourhoods of suitably chosen curves. If H°°(Ω) is the Banach algebra of bounded holomorphic functions on a bounded domain Ω in Cn and if p is a point in Ω, then the following problem is known as Gleason’s Problem for Hoo(Ω) : Is the maximal ideal in H°°(Ω) consisting of functions vanishing at p generated by (z1 -p1) , ... , (zn - pn) ? A sufficient condition for solving Gleason’s Problem for 77°° (Ω) for all points in Ω is given. In particular, this condition is fulfilled by a convex domain Ω with Lip1+e boundary (0 < e < 1) and thus generalizes a theorem of S.L.Leibenson. It is also proved that Gleason’s Problem can be solved for all points in certain unions of two polydisks in C2. One of the ideas in the methods of proof is integration along specific polygonal lines. Certain properties of some open sets defined by global plurisubharmonic functions in Cn are studied. More precisely, the sets Du = {z e Cn : u(z) < 0} and Eh = {{z,w) e Cn X C : h(z,w) < 1} are considered where ti is a plurisubharmonic function of minimal growth and h≠0 is a non-negative homogeneous plurisubharmonic function. (That is, the functions u and h belong to the classes L(Cn) and H+(Cn x C) respectively.) It is examined how the fact that Eh and the connected components of Du are H°°-domains of holomorphy is related to the structure of the set of discontinuity points of the global defining functions and to polynomial convexity. Moreover it is studied whether these notions are preserved under a certain bijective mapping from L(Cn) to H+(Cn x C). Two counterexamples are given which show that polynomial convexity is not preserved under this bijection. It is also proved, for example, that if Du is bounded and if the set of discontinuity points of u is pluripolar then Du is of type H°°. A survey paper on general properties of envelopes of holomorphy is included. In particular, the paper treats aspects of the theory for the bounded holomorphic functions. The results for the bounded holomorphic functions are compared with the corresponding ones for the holomorphic functions. / digitalisering@umu.se
|
Page generated in 0.0603 seconds