• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Approche micromécanique du comportement d'un matériau fissuré non saturé / Micromechanical approach of behaviour of a cracked unsaturated material

Tran, Bao Viet 12 January 2010 (has links)
On s'intéresse plus particulièrement à la modélisation du comportement d'un matériau hétérogène méso-fissuré (béton, roche,...), soumis à une sollicitation thermo-hydro-mécanique avec prise en compte du couplage géométrique. Pour conduire cette étude, on s'appuie notamment sur les approches micro-mécaniques du comportement des milieux méso-fissurés non saturés développées depuis quelques années au Laboratoire des Matériaux et des Structures du Génie Civil - Ur Navier - Université Paris Est. Le milieu fissuré non saturé traité ici est constitué d'une matrice solide homogène élastique linéaire et de fissures connectées saturées par deux fluides immiscibles : un liquide et un gaz séparés par une surface capillaire. La fissure est traditionnellement considérée comme une cavité ellipsoïdale (cas 3D) ou elliptique (cas 2D) dont le rapport d'aspect tend vers zéro. Deux morphologies typiques de matériau sont considérés dans ce travail : la situation où les fissures sont toutes orientées dans la même direction et la situation où les fissures possèdent des orientations aléatoires. Dans une première étape, on rappelle brièvement les résultats disponibles concernant la modélisation des fissures non saturées par des cavités ellipsoïdales aplaties. A la fin de cette première partie, on complète les résultats déjà disponibles en étudiant l'influence de l'histoire de chargement sur la réponse de matériau. Dans une deuxième étape, on s'attache à valider une partie des résultats obtenus en utilisant une description des efforts capillaires dans les fissures par une précontrainte homogène en seréférant aux solutions analytiques exactes disponibles dans la littérature permettant de décrire le comportement d'une fissure isolée au sein d'une matrice élastique. Dans une troisième étape, on s'intéresse aux phénomènes de propagation des fissures en condition non saturée. Les lois de propagation sous critique et le phénomène de branchement des fissures sont également prises en compte dans cette approche. La dernière partie de la thèse concerne l'influence de la température sur le comportement des milieux poreux non saturés / The main topic of my work is the development of a micromechanical model for the behaviour of unsaturated mesocracks in media (concrete, rock...) in which the thermo-hydro-mechanical loadingsand thermo-hydro-mechanical couplings are taken into account. For this, we used the micromechanical approach model of behaviour of cracked porous media recently developed at LMSGC. My thesis is focused on the equilibrium configurations of a porous material whose pore space is saturated by a vapour and a liquid phase. The behaviour of an elastic medium containing unsaturated mesocracks is studied in the framework of a micromechanical approach. The cracks are filled by two immiscible fluids, namely a liquid and a gas, separated by a capillary interface. Furthermore, it is assumed that the set of cracks constitutes a connected network ; the capillary pressure is uniform over a representative elementary volume. The cracks are modelled as flat oblate spheroid cavities. Several geometrical configurations of cracks in porous media are considered in the framework of Eshelby-based homogenization methods (parallel cracks, randomly oriented cracks). First, a previously developed model showed that when coupling between the deformation of the cracks and the capillary forces is taken into account, there is no more a one-to-one relationship between the loading parameters and the state-variables. Thus, we describe the loading history prescribed to the material in order to compute its response. Second, we validate these results referring to the exact solutions available in the literature to describe the behaviour of a unsaturated crack within an elastic matrix. Third, the description of crack propagation in unsaturated media is considered in the framework of linear elastic fracture mechanics. The phenomenon of subcritical crack growth due to stress corrosion cracking is taken into account in this approach. Mixed mode fracture in the plane is also examined. Finally, we are interested in the influence of the temperature on the behavior of unsaturated porous media in the framework of the micromechanical approach
12

Multi-scale modeling of damage in masonry structures / Multi-scale modeling of damage in masonry walls

Massart, Thierry,Jacques 02 December 2003 (has links)
<p align="justify">The conservation of structures of the historical heritage is an increasing concern nowadays for public authorities. The technical design phase of repair operations for these structures is of prime importance. Such operations usually require an estimation of the residual strength and of the potential structural failure modes of structures to optimize the choice of the repairing techniques.</p> <p><p align="justify">Although rules of thumb and codes are widely used, numerical simulations now start to emerge as valuable tools. Such alternative methods may be useful in this respect only if they are able to account realistically for the possibly complex failure modes of masonry in structural applications.</p><p><p align="justify">The mechanical behaviour of masonry is characterized by the properties of its constituents (bricks and mortar joints) and their stacking mode. Structural failure mechanisms are strongly connected to the mesostructure of the material, with strong localization and damage-induced anisotropy.</p><p><p align="justify">The currently available numerical tools for this material are mostly based on approaches incorporating only one scale of representation. Mesoscopic models are used in order to study structural details with an explicit representation of the constituents and of their behaviour. The range of applicability of these descriptions is however restricted by computational costs. At the other end of the spectrum, macroscopic descriptions used in structural computations rely on phenomenological constitutive laws representing the collective behaviour of the constituents. As a result, these macroscopic models are difficult to identify and sometimes lead to wrong failure mode predictions.</p><p><p align="justify">The purpose of this study is to bridge the gap between mesoscopic and macroscopic representations and to propose a computational methodology for the analysis of plane masonry walls. To overcome the drawbacks of existing approaches, a multi-scale framework is used which allows to include mesoscopic behaviour features in macroscopic descriptions, without the need for an a priori postulated macroscopic constitutive law. First, a mesoscopic constitutive description is defined for the quasi-brittle constituents of the masonry material, the failure of which mainly occurs through stiffness degradation. The mesoscopic description is therefore based on a scalar damage model. Plane stress and generalized plane state assumptions are used at the mesoscopic scale, leading to two-dimensional macroscopic continuum descriptions. Based on periodic homogenization techniques and unit cell computations, it is shown that the identified mesoscopic constitutive setting allows to reproduce the characteristic shape of (anisotropic) failure envelopes observed experimentally. The failure modes corresponding to various macroscopic loading directions are also shown to be correctly captured. The in-plane failure mechanisms are correctly represented by a plane stress description, while the generalized plane state assumption, introducing simplified three-dimensional effects, is shown to be needed to represent out-of-plane failure under biaxial compressive loading. Macroscopic damage-induced anisotropy resulting from the constituents' stacking mode in the material, which is complex to represent properly using macroscopic phenomenological constitutive equations, is here obtained in a natural fashion. The identified mesoscopic description is introduced in a scale transition procedure to infer the macroscopic response of the material. The first-order computational homogenization technique is used for this purpose to extract this response from unit cells. Damage localization eventually appears as a natural outcome of the quasi-brittle nature of the constituents. The onset of macroscopic localization is treated as a material bifurcation phenomenon and is detected from an eigenvalue analysis of the homogenized acoustic tensor obtained from the scale transition procedure together with a limit point criterion. The macroscopic localization orientations obtained with this type of detection are shown to be strongly related to the underlying mesostructural failure modes in the unit cells.</p> <p><p align="justify">A well-posed macroscopic description is preserved by embedding localization bands at the macroscopic localization onset, with a width directly deduced from the initial periodicity of the mesostructure of the material. This allows to take into account the finite size of the fracturing zone in the macroscopic description. As a result of mesoscopic damage localization in narrow zones of the order of a mortar joint, the material response computationally deduced from unit cells may exhibit a snap-back behaviour. This precludes the use of such a response in the standard strain-driven multi-scale scheme.</p> <p><p align="justify">Adaptations of the multi-scale framework required to treat the mesostructural response snap-back are proposed. This multi-scale framework is finally applied for a typical confined shear wall problem, which allows to verify its ability to represent complex structural failure modes.</p><p> / Doctorat en sciences appliquées / info:eu-repo/semantics/nonPublished

Page generated in 0.1012 seconds