1 |
Homormophic Images and their Isomorphism TypesHerrera, Diana 01 June 2014 (has links)
In this thesis we have presented original homomorphic images of permutations and monomial progenitors. In some cases we have used the double coset enumeration tech- nique to construct the images and for all of the homomorphic images that we have discovered, the isomorphism type of each group is given. The homomorphic images discovered include Linear groups, Alternating groups, and two sporadic simple groups J1 and J2X2 where J1 is the smallest Janko group and J2 is the second Janko sporadic group.
|
2 |
Monomial Progenitors and Related TopicsAlnominy, Madai Obaid 01 March 2018 (has links)
The main objective of this project is to find the original symmetric presentations of some very important finite groups and to give our constructions of some of these groups. We have found the Mathieu sporadic group M11, HS × D5, where HS is the sporadic group Higman-Sim group, the projective special unitary group U(3; 5) and the projective special linear group L2(149) as homomorphic images of the monomial progenitors 11*4 :m (5 :4), 5*6 :m S5 and 149*2 :m D37. We have also discovered 24 : S3 × C2, 24 : A5, (25 : S4), 25 : S3 × S3, 33 : S4 × C2, S6, 29: PGL(2,7), 22 • (S6 : S6), PGL(2,19), ((A5 : A5 × A5) : D6), 6 • (U4(3): 2), 2 • PGL(2,13), S7, PGL (2,8), PSL(2,19), 2 × PGL(2,81), 25 : (S6 × A5), 26 : S4 × D3, U(4,3), 34 : S4, 32 :D6, 2 • (PGL(2,7) :PSL(2,7), 22 : (S5 : S5) and 23 : (PSL3(4) : 2) as homomorphic images of the permutation progenitors 2*8 : (2 × 4 : 2), 2*16: (2 × 4 :C2 × C2), 2*9: (S3 × S3), 2*9: (S3 × A3), 2*9: (32 × 23) and 2*9: (33 × A3). We have also constructed 24: S3 × C2, 24 : A5, (25: S4), 25 : S3 × S3,: 33: S4 × C2, S6, M11 and U (3,5) by using the technique of double coset enumeration. We have determined the isomorphism types of the most of the images mentioned in this thesis. We demonstrate our work for the following examples: 34 : (32 * 23) × 2, 29 : PGL(2,7), 2•S6, (54 : (D4 × S3)), and 3: •PSL(2,19) ×2.
|
3 |
Simple Groups, Progenitors, and Related TopicsBaccari, Angelica 01 June 2018 (has links)
The foundation of the work of this thesis is based around the involutory progenitor and the finite homomorphic images found therein. This process is developed by Robert T. Curtis and he defines it as 2^{*n} :N {pi w | pi in N, w} where 2^{*n} denotes a free product of n copies of the cyclic group of order 2 generated by involutions. We repeat this process with different control groups and a different array of possible relations to discover interesting groups, such as sporadic, linear, or unitary groups, to name a few. Predominantly this work was produced from transitive groups in 6,10,12, and 18 letters. Which led to identify some appealing groups for this project, such as Janko group J1, Symplectic groups S(4,3) and S(6,2), Mathieu group M12 and some linear groups such as PGL2(7) and L2(11) . With this information, we performed double coset enumeration on some of our findings, M12 over L_2(11) and L_2(31) over D15. We will also prove their isomorphism types with the help of the Jordan-Holder theorem, which aids us in defining the make up of the group. Some examples that we will encounter are the extensions of L_2(31)(center) 2 and A5:2^2.
|
Page generated in 0.0619 seconds