31 |
Beiträge zur Homotopietheorie simplizialer MengenLamotke, Klaus. January 1963 (has links)
Inaug.-Diss.--Bonn.
|
32 |
Some theorems on generalized cohomologyKrueger, Warren Max, January 1966 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1966. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
|
33 |
E [infinity] algebras and p-adic homotopy theory /Mandell, Michael A. January 1997 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Mathematics, June 1997. / Includes bibliographical references. Also available on the Internet.
|
34 |
Maps between spectra and the Steinberg idempotentCathcart, Alan George January 1988 (has links)
No description available.
|
35 |
Tensor products in homotopy theoryHeggie, Murray. January 1986 (has links)
No description available.
|
36 |
Contributions to rational homotopy theory /Oprea, John F. January 1982 (has links)
No description available.
|
37 |
Relation between wedge cancellation and localization for complexes with two cells.Molnar, Edward Allen January 1972 (has links)
No description available.
|
38 |
Contributions to algebraic homotopy theory.Schlomiuk, Norbert H. January 1966 (has links)
No description available.
|
39 |
Pre-quantization of the Moduli Space of Flat G-bundlesKrepski, Derek 18 February 2010 (has links)
This thesis studies the pre-quantization of quasi-Hamiltonian group actions from a
cohomological viewpoint. The compatibility of pre-quantization with symplectic reduction
and the fusion product are established, and are used to understand the necessary and sufficient conditions for the pre-quantization of M(G,S), the moduli space of
at flat G-bundles over a closed surface S.
For a simply connected, compact, simple Lie group G, M(G,S) is known to be pre-quantizable at integer levels. For non-simply connected G, however, integrality of the level is not sufficient for pre-quantization, and this thesis determines the obstruction, namely a certain 3-dimensional cohomology class, that places further restrictions on the underlying level. The levels that admit a pre-quantization of the moduli space are
determined explicitly for all non-simply connected, compact, simple Lie groups G. Partial results are obtained for the case of a surface S with marked points.
Also, it is shown that via the bijective correspondence between quasi-Hamiltonian
group actions and Hamiltonian loop group actions, the corresponding notions of prequantization coincide.
|
40 |
Rational homotopy type of subspace arrangementsDebongnie, Géry 24 October 2008 (has links)
Un arrangement central A est un ensemble fini de sous-espaces vectoriels dans un espace vectoriel complexe V de dimension finie. L'espace topologique complémentaire M(A) est l'ensemble des points de V qui n'appartiennent à aucun des sous-espaces de A. Dans ce travail, nous étudions la topologie de l'espace M(A) du point de vue de l'homotopie rationnelle.
L'outil clé qui a servi de départ à cette thèse est un modèle rationnel de M(A) qui s'avère relativement simple à manipuler. À l'aide de ce modèle, nous obtenons plusieurs résultats sur la topologie de M(A). Citons par exemple des formules de récursion qui permettent de calculer certains invariants topologiques, dont les nombres de Betti, une preuve du fait que la caractéristique d'Euler de l'espace M(A) est nulle ou encore une description des arrangements (vérifiant une condition technique) dont le complémentaire est un wedge rationnel de sphères.
Enfin, les résultats principaux de cet ouvrage sont une caractérisation des arrangements dont le complémentaire a le type d'homotopie d'un produit de sphères, et la preuve du fait que si le complémentaire n'est pas un produit de sphères, alors son algèbre de Lie d'homotopie contient la sous-algèbre de Lie libre à deux générateurs.
|
Page generated in 0.045 seconds