1 |
Mechanical Properties and Failure Analysis of Cellular Core Sandwich PanelsShah, Udit 10 January 2018 (has links)
Sandwich Panels with cellular cores are widely used in the aerospace industry for their higher stiffness to mass, strength to mass ratio, and excellent energy absorption capability. Even though, sandwich panels are considered state of the art for lightweight aerospace structures, the requirement to further reduce the mass exists due to the direct impact of mass on mission costs.
Traditional manufacturing techniques have limited the shape of the cores to be either hexagonal or rectangular, but, with rapid advancements in additive manufacturing, other core shapes can now be explored. This research aims to identify and evaluate the mechanical performance of two-dimensional cores having standard wall geometry, which provide higher specific stiffness than honeycomb cores. Triangular cores were identified to have higher specific in-plane moduli and equivalent specific out-of-plane and transverse shear moduli. To consider practical use of the triangular cores, elastic and elastic-plastic structural analysis was performed to evaluate the stiffness, strength, failure, and energy absorption characteristics of both the core and sandwich panels. The comparison made between triangular cores and hexagonal cores having the same cell size and relative density showed that triangular cores outperform hexagonal cores in elastic range and for applications where in-plane loading is dominant. Triangular cores also have excellent in-plane energy absorption capabilities at higher densities. / Master of Science / Sandwich panels with cellular cores are widely used in aerospace structures to reduce weight, which helps increase payload and improve fuel efficiency. They also have the ability to absorb energy during accidental impacts. Sandwich construction typically consists of two thin facesheets separated by a lightweight core and, is analogous to I-beams used in civil structures. Most commonly used core is the hexagonal honeycomb core inspired by beehives. While sandwich panels constructed using honeycomb cores are considered the state-of-the-art for lightweight aerospace structures, there is a need to further reduce the mass due to the direct impact on mission costs.
This research aims to explore other core shapes that provide better stiffness to mass ratio than the hexagonal core. Among the two-dimensional cores explored, the triangular shaped core was identified to have higher stiffness than the hexagonal core of the same size and weight. To consider practical use of triangular cores, mechanical performance and failure behavior of sandwich panels constructed using triangular core sandwich panels was compared to hexagonal core sandwich panels. It was concluded that the triangular panels provided higher stiffness for the same mass and was more resistant to failure when axially loaded. Triangular cores also have excellent in-plane energy absorption capabilities at higher densities.
|
2 |
Amortissement des vibrations de réflecteur d'antenne de satellite par micro-perforations / Vibration damping of antenna's reflector of satellite by microperforationsRégniez, Margaux 04 May 2015 (has links)
Ce travail de thèse porte sur l'étude de l'influence des micro-perforations sur la réponse vibratoire d'une structure cellulaire de type panneau sandwich NIDA (nid d'abeille). Les réflecteurs d'antenne de satellites placés sur les satellites de télécommunication, comme beaucoup d'autres éléments, sont fabriqués avec ce type de matériaux. Lors du décollage du lanceur pour la mise en orbite du satellite, les sollicitations mécaniques appliquées au système sont de nature acoustique et solidienne. La sollicitation acoustique liée au champ acoustique diffus et de très fort niveau présent dans la coiffe du lanceur est la plus importante. Elle joue un rôle important dans le dimensionnement et la conception du réflecteur d'antenne. L'enjeu de la thèse est d'évaluer le potentiel d'un traitement de ce panneau par micro-perforations pour en réduire les vibrations. L'effet des micro-perforations sur la réponse vibratoire du réflecteur d'antenne est double. D'une part, le chargement acoustique que constitue la pression excitatrice est réduit par un mécanisme d'absorption du à la présence des micro-perforations, couplées aux cavités formées par les cellules NIDA du matériau. Cet effet, connu dans la littérature est décrit notamment par le modèle d'impédance acoustique de D.-Y. Maa, couplé à un modèle d'impédance de la cavité NIDA et prenant en compte les rayonnements interne et externe à la micro-perforation. D'autre part, un effet, de nature vibro-acoustique est induit par le couplage entre les vibrations du panneau et les mouvements acoustiques dans les micro-perforations. La modélisation de cet effet, mal décrit dans la littérature constitue un élément original du travail : un modèle discret construit à partir de l'impédance acoustique d'un orifice permet le calcul d'une force d'amortissement élémentaire, puis, après homogénéisation, à une estimation de l'amortissement modal du panneau micro-perforé. Les modélisations proposées pour la réduction de chargement acoustique et de l'amortissement ajouté par micro-perforation montrent que la réponse vibratoire du panneau est faiblement réduite dans la plage de fréquence d'intérêt, ce que confirment plusieurs tests expérimentaux : comparaison de réponse de panneau micro-perforé ou non en chambre réverbérante et en chambre à bruit. La modification de chargement acoustique apportée par la micro-perforation des deux faces du panneau sandwich NIDA est modélisée dans le dernier chapitre et donne lieu à une augmentation de l'effet dans la gamme de fréquence visée. / This thesis work is about the study of the microperforations influence on the vibratory response of a cellular structure as a honeycomb sandwich panel. Satellites' antenna's reflectors placed on telecommunication satellites, as many satellites' elements, are manufactured in this kind of materials. During the launcher take-off for putting satellite into orbit, the mechanical stresses applied to the system are acoustical and vibration borne stress. The acoustic stress, linked to the high level diffuse acoustic field inside the launcher fairing is the most important. It plays a part in the antenna's reflector size and conception. The issue of the thesis is to evaluate the potential of a treatment using microperforations on this panel in order to reduce its vibration. The microperforations effect on the vibration response of the antenna's reflector is double. On one hand, the acoustic loading applied by the exciter pressure is reduced by an absorption mechanism due to the presence of microperforations, coupled to cavities formed by honeycomb cells. This effect, well known in the litterature, is for instance described by the acoustic impedance model developped by D.-Y. Maa, coupled to an impedance model of honeycomb cavity and taking into account the inner and outer radiations of the microperforation. On the other hand, a vibro-acoustical effect is induced by the coupling between panel vibrations and acoustic movements inside microperforations. The modelling of this effect, not well described in the litterature, constitutes an original element of the thesis work: a discrete model constructed using the acoustic impedance of an orifice, allows the computation of an elementary damping force and then leads, after an homogenisation, to an estimation of the modal damping of the microperforated panel. Both modellings proposed for the acoustic loading reduction and the damping added by microperforations, show that the panel vibration response is weakly reduced in the frequency band of interest, which confirms experimental tests like: response comparison of non microperforated and microperforated panels placed in reverberant room and noise chamber. The acoustic loading modification induced by the microperforation of both sides of the honeycomb sandwich panel is modelling in the thesis last chapter and allows an increase of the effect on the frequency band aimed.
|
3 |
Inter-laminar Stresses In Composite Sandwich Panels Using Variational Asymptotic Method (VAM)Rao, M V Peereswara 04 1900 (has links) (PDF)
In aerospace applications, use of laminates made of composite materials as face sheets in sandwich panels are on the rise. These composite laminates have low transverse shear and transverse normal moduli compared to the in-plane moduli. It is also seen that the corresponding transverse strength values are very low compared to the in-plane strength leading to delaminations. Further, in sandwich structures, the core is subjected to significant transverse shear stresses. Therefore the interlaminar stresses (i.e., transverse shear and normal) can govern the design of sandwich structures. As a consequence, the first step in achieving efficient designs is to develop the ability to reliably estimate interlaminar stresses.
Stress analysis of the composite sandwich structures can be carried out using 3-D finite elements for each layer. Owing to the enormous computational time and resource requirements for such a model, this process of analysis is rendered inefficient. On the other hand, existing plate/shell finite elements, when appropriately chosen, can help quickly predict the 2-D displacements with reasonable accuracy. However, their ability to calculate the thickness-wise distributions of interlaminar shear and normal stresses and 3-D displacements remains as a research goal. Frequently, incremental refinements are offered over existing solutions. In this scenario, an asymptotically correct dimensional reduction from 3-D to 2-D, if possible, would serve to benchmark any ongoing research. The employment of a mathematical technique called the Variational Asymptotic Method (VAM) ensures the asymptotical correctness for this purpose.
In plates and sandwich structures, it is typically possible to identify (purely from the defined material distributions and geometry) certain parameters as small compared to others. These characteristics are invoked by VAM to derive an asymptotically correct theory. Hence, the 3-D problem of plates is automatically decomposed into two separate problems (namely 1-D+2-D), which then exchange relevant information between each other in both ways. The through-the-thickness analysis of the plate, which is a 1-D analysis, provides asymptotic closed form solutions for the 2-D stiffness as well as the recovery relations (3-D warping field and displacements in terms of standard plate variables). This is followed by a 2-D plate analysis using the results of the 1-D analysis. Finally, the recovery relations regenerate all the required 3-D results. Thus, this method of developing reduced models involves neither ad hoc kinematic assumptions nor any need for shear correction factors as post-processing or curve-fitting measures. The results are most general and can be made as accurate as desired, while the procedure is computationally efficient.
In the present work, an asymptotically correct plate theory is formulated for composite sandwich structures. In developing this theory, in addition to the small parameters (such as small strains, small thickness-to-wavelength ratios etc.,) pertaining to the general plate theory, additional small parameters characterizing (and specific to) sandwich structures (viz., smallness of the thickness of facial layers com-pared to that of the core and smallness of elastic material stiffness of the core in relation to that of the facesheets) are used in the formulation. The present approach also satisfies the interlaminar displacement continuity and transverse equilibrium requirements as demanded by the exact 3-D formulation. Based on the derived theory, numerical codes are developed in-house. The results are obtained for a typical sandwich panel subjected to mechanical loading. The 3-D displacements, inter-laminar normal and shear stress distributions are obtained. The results are compared with 3-D elasticity solutions as well as with the results obtained using 3-D finite elements in MSC NASTRAN®. The results show good agreement in spite of the major reduction in computational effort. The formulation is then extended for thermo-elastic deformations of a sandwich panel.
This thesis is organized chronologically in terms of the objectives accomplished during the current research. The thesis is organized into six chapters. A brief organization of the thesis is presented below.
Chapter-1 briefly reviews the motivation for the stress analysis of sandwich structures with composite facesheets. It provides a literature survey on the stress analysis of composite laminates and sandwich plate structures. The drawbacks of the existing anlaytical approaches as opposed to that of the VAM are brought out. Finally, it concludes by listing the main contributions of this research.
Chapter-2 is dedicated to an overview of the 3-D elasticity formulation of composite sandwich structures. It starts with the 3-D description of a material point on a structural plate in the undeformed and deformed configurations. Further, the development of the associated 3-D strain field is also described. It ends with the formulation of the potential energy of the sandwich plate structure.
Chapter-3 develops the asymptotically correct theory for composite sandwich plate structure. The mathematical description of VAM and the procedure involved in developing the dimensionally reduciable structural models from 3-D elasticity functional is first described. The 1-D through-the-thickness analysis procedure followed in developing the 2-D plate model of the composite sandwich structure is then presented. Finally, the recovery relations (which are one of the important results from 1-D through-the-thickness analysis) to extract 3-D responses of the structure are obtained.
The developed formulation is applied to various problems listed in chapter
4. The first section of this chapter presents the validation study of the present formulation with available 3-D elasticity solutions. Here, composite sandwich plates for various length to depth ratios are correlated with available 3-D elasticity solutions as given in [23]. Lastly, the distributions of 3-D strains, stresses and displacements along the thickness for various loadings of a typical sandwich plate structure are correlated with corresponding solutions using well established 3-D finite elements of MSC NASTRAN® commerical FE software.
The developed and validated formulation of composite sandwich structure for mechanical loading is extended for thermo-elastic deformations. The first sections of this chapter describes the seamless inclusion of thermo-elastic strains into the 3-D elasticity formulation. This is followed by the 1-D through-the-thickness analysis in developing the 2-D plate model. Finally, it concludes with the validation of the present formulation for a very general thermal loading (having variation in all the three co-ordinate axes) by correlating the results from the present theory with that of the corresponding solutions of 3-D finite elements of MSC NASTRAN® FE commercial software.
Chapter-6 summarises the conclusions of this thesis and recommendations for future work.
|
Page generated in 0.057 seconds