• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Occurrence of Per- and Polyfluoroalkyl Substances (PFAS) in Private Water Supplies in Southwest Virginia

Hohweiler, Kathleen A. 24 May 2023 (has links)
Per- and polyfluoroalkyl substances (PFAS) are a class of man-made contaminants of increasing human health concern due to their resistance to degradation, widespread occurrence in the environment, bioaccumulation in human and animal organ tissue, and potential negative health impacts. Drinking water is suspected to be a primary source of human PFAS exposure, so the US Environmental Protection Agency (US EPA) has set interim and final health advisories for several PFAS species that are applicable to municipal water supplies. However, private drinking water supplies may be uniquely vulnerable to PFAS contamination, as these systems are not subject to EPA regulation and often include limited treatment prior to use for drinking or cooking. The goal of this study was to determine the incidence of PFAS contamination in private drinking water supplies in two counties in Southwest Virginia (Floyd and Roanoke), and to examine the potential for reliance on citizen-science based strategies for sample collection in subsequent broader sampling efforts. Samples for inorganic ions, bacteria, and PFAS analysis were collected on separate occasions by homeowners and experts at the home drinking water point of use (POU) in 10 Roanoke and 10 Floyd County homes for comparison. Experts also collected an outside tap PFAS sample. At least one PFAS compound was detected in 76% of POU samples collected (n=60), with an average total PFAS concentration of 23.5 parts per trillion (ppt). PFOA and PFOS, which are currently included in EPA health advisories, were detected in 13% and 22% of POU samples, respectively. Of the 31 PFAS species targeted, 15 were detected in at least one sample. On average, a single POU sample contained approximately 3 PFAS, and one sample contained as many as 8 different species, indicating that exposure to PFAS in complex mixtures is worth noting. Although there were significant differences in total PFAS concentrations between expert and homeowner collected samples (Wilcoxon, alpha = 0.05), it is unclear whether this difference was due to contamination by the collector or the water usage and time of day of sampling (i.e. morning, afternoon). It is worth noting that there was no significant difference in the number of PFAS species in the samples collected by homeowners and experts. Given the considerable variation in PFAS detections between homes, future studies reliant on homeowner collection of samples appears possible given proper training and instruction to collect at the same time of day (i.e. first thing in the morning). / Master of Science / Per- and polyfluoroalkyl substances (PFAS) belong to a large family of manmade compounds that are commonly used in a variety of household and consumer products due to their unique water and stain resistant properties. PFAS compounds are not easily broken down in the environment and have been detected globally in air, soil, and water samples. In addition to their environmental detections, PFAS are slow to be removed from the body after ingestion and known to cause negative health effects in concentrations less than one part per trillion. Drinking water is considered to a main source of PFAS consumption for humans; as such, the US Environmental Protection Agency (US EPA) has set strict, but not legally binding, interim and final health advisories (HA) for four types of PFAS. However, these health advisories only apply to public water services and do not cover private drinking water systems, such as wells or springs, which are the full responsibility of the well owner. Private drinking water system users often do not treat their water before drinking which may make these systems uniquely vulnerable to PFAS contamination. This study focused on 20 total homes, 10 in Roanoke County and 10 in Floyd County to see if PFAS was present and to determine whether or not homeowners would be able to collect their own samples for PFAS analysis at home as accurately as researchers or experts with proper instructions. Homeowners and experts collected drinking water samples inside at a point of use (POU), usually at a kitchen faucet, and outside of the home, usually from a tap. PFAS were present in 76% (n=60) of POU samples, with an average combined concentration of 23.5 parts per trillion (ppt). The two most well studied PFAS, PFOA and PFOS were detected in 13% and 22% of POU samples, respectively. It was also common to detect at least 3 PFAS in a single sample. Although there were differences in total average concentrations of PFAS in samples collected by homeowners and experts, variation could be caused by several factors indicating that with proper training and instruction it is likely future studies could still rely on homeowners to collect samples for PFAS analysis.

Page generated in 0.0612 seconds