• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Downscaled Hovering Device for a Hospital Bed to Reduce Rolling Resistance / Utveckling av en nedskalad svävningsanordning för en sjukhussäng för att minska rullmotstånd

Namrood, Kristian January 2021 (has links)
Fall-related injuries are common problems in elderly care in particular. These can cause brain damage and hip fractures, which in many cases can be serious. To reduce or mitigate the damage, various safety measures have been developed. One of them concerns a change in the surroundings, more specifically, the floor. At KTH within the Division of Neuronic Engineering, research has been done on how the impact of the case can be minimized and a shock absorbing floor (SAF) was developed. Diving problems with this type of flooring are that heavy medical beds sink into the floor, which means increased rolling resistance and thus long-term damage to both the floor and the medical staff. The aim of this thesis was to investigate how much rolling resistance can be minimized by building a downscaled hovering device based on hovercraft technology. The purpose was to enable the device to possibly be mounted under hospital beds and create a lifting force. To evaluate the performance, force measurements were performed on KTH SAF with different weights and with the use of a dynamometer. The results showed that the device reduced rolling resistance by up to 57.4% with additional weight. Four axial fans were used together with manual control of the speed of each fan. The selected components were made taking into account, in particular, cost, weight and dimensions and can thus also be limiting factors for this thesis. For future work, effective soundproofing is needed for this solution to be possible to be implemented in a hospital environment. Furthermore, studies needs to be carried out for a full-scale prototype to confirm that an equally large reduction in rolling resistance can be achieved.

Page generated in 0.0967 seconds