• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 20
  • 7
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 112
  • 55
  • 19
  • 18
  • 16
  • 16
  • 14
  • 14
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Evolutionary study of the Hox gene family with matrix-based bioinformatics approaches

Thomas-Chollier, Morgane 27 June 2008 (has links)
Hox transcription factors are extensively investigated in diverse fields of molecular and evolutionary biology. Hox genes belong to the family of homeobox transcription factors characterised by a 60 amino acids region called homeodomain. These genes are evolutionary conserved and play crucial roles in the development of animals. In particular, they are involved in the specification of segmental identity, and in the tetrapod limb differentiation. In vertebrates, this family of genes can be divided into 14 groups of homology. Common methods to classify Hox proteins focus on the homeodomain. Classification is however hampered by the high conservation of this short domain. Since phylogenetic tree reconstruction is time-consuming, it is not suitable to classify the growing number of Hox sequences. The first goal of this thesis is therefore to design an automated approach to classify vertebrate Hox proteins in their groups of homology. This approach classifies Hox proteins on the basis of their scores for a combination of protein generalised profiles. The resulting program, HoxPred, combines predictive accuracy and time efficiency. We used this program to detect and classify Hox genes in several teleost fish genomes. In particular, it allowed us to clarify the evolutionary history of the HoxC1a genes in teleosts. Overall, HoxPred could efficiently contribute to the bioinformatics toolbox commonly used to annotate vertebrate Hox sequences. This program was then evaluated in non-vertebrate species. Although not intended for the classification of Hox proteins in distantly related species, HoxPred showed a high accuracy in bilaterians. It has also given insights into the evolutionary relationships between bilaterian posterior Hox genes, which are notoriously difficult to classify with phylogenetic trees.<p><p>As transcription factors, Hox proteins regulate target genes by specifically binding DNA on cis-regulatory elements. Only a few of these target genes have been identified so far. The second goal of this work was to evaluate whether it is possible to apply computational approaches to detect Hox cis-regulatory elements in genomic sequences. Regulatory Sequence Analysis Tools (RSAT) is a suite of bioinformatics tools dedicated to the detection of cis-regulatory elements in genomes. We participated to the development of matrix-based pattern matching approaches in RSAT. After having performed a statistical validation of the pattern-matching scores, we focused on a study case based on the vertebrate HoxB1 protein, which binds DNA with its cofactors Pbx and Meis. This study aimed at predicting combinations of cis-regulatory elements for these three transcription factors. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
112

Appendage development and early distal-less regulation in arthropods : a study of the chelicerate Tetranychus urticae (Acarida)

Cyrus-Kent, Chlo January 2007 (has links)
A major goal of evolutionary developmental biology is to explore mechanisms and events underlying evolution of the myriad body plan morphologies expressed both genetically and phenotypically within the animal kingdom. Arthropods exhibit an astounding array of morphological diversity both within and between representative sub-phyla, thus providing an ideal phylum through which to address questions of body plan innovation and diversification. Major arthropod groups are recognised and defined by the distinct form and number of articulated appendages present along the antero-posterior axis of their segmented bodies. A great deal is known about the developmental genetics of limb development in the model insect Drosophila melanogaster, added to which, much comparative gene expression data and a growing body of functional genetic data is emerging for other arthropod species. Arthropod limb primordia are consistently marked by expression of the homeobox gene Distal-less (Dll), and the focus of this thesis is to compare signalling mediated by early Dll regulatory genes activity along antero-posterior and dorso-ventral embryonic axes during limb specification in Drosophila, with the activity of their orthologs in the widely disparate chelicerate, the spider mite Tetranychus urticae - interpreting new data with that available for other arthropods. Having made a detailed study of spider mite embryonic (and post-embryonic) development, to provide a basis for understanding mRNA transcription and protein activity patterns, I confirmed typical expression of Tetranychus Dll in prosomal limb primordia. I obtained limited results for the candidate antero-posterior positioning genes wingless and engrailed, although one of the two engrailed paralogs I identified is reportedly expressed in posterior segmental compartments, consistent with possible conservation of Engrailed-Wingless interactions in metameric patterning and positive regulation of Dll in arthropod limb specification. In Drosophila, wingless-dependent Dll transcription is restricted along the dorso-ventral axis by dorsal Dpp-mediated and ventral EGFR-mediated signalling gradients. Based on data from Tetranychus and other arthropods, neither dorsal nor ventral signalling regimes appear conserved outside the Drosophila system. Dll suppression in fly abdominal segments occurs due to powerful Hox (Ubx/AbdA) repression of the early Dll cis-regulatory element; this is discussed in relation to the independently evolved limbless chelicerate opisthosoma, informed by hypothetical scenarios of cis (regulatory DNA) and trans (coding sequence) evolution. Given practical difficulties and limitations encountered while working with spider mites, I offer a final assessment of the place of Tetranychus urticae as a non-model, and yet still valuable chelicerate species to consider carrying into the exciting future of evolutionary developmental biology.

Page generated in 0.0591 seconds