• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DNA sequence selectivity and kinetic properties of de novo designed metalloprotein dimers

Wong-Deyrup, Siu Wah 01 January 2007 (has links)
In our efforts to engineer a DNA binding and cleaving protein with greater sequence discrimination, we have designed dimeric proteins derived from engrailed homeodomain and calmodulin. Previous research by our group has shown that a hydrolytically active lanthanide binding site can be incorporated into a DNA binding motif. To understand protein-DNA interaction and improve the sequence selectivity of the chimeric complex, two lanthanide-binding homodimers were designed and expressed. One of the dimers, F2, is coupled together by a flexible polypeptide linker and the other, R7C, is a disulfide cross-linked cysteine mutant at the N-terminus. Studies of fluorescence of tryptophan residues document that the overall affinity for lanthanide and calcium is similar to traditional EF-hand peptides (1-10 μM). Metal titrations monitored by circular dichroism (CD) revealed that the secondary structures of the dimers contained a lower degree of -helicity than the designed monomeric protein due to additional modifications, but because of their flexibility and their two active-site domain, hydrolytic activity was several folds faster than our previously designed proteins and peptides. Unlike earlier reports on our chimeras, F2 also demonstrated the capability to hydrolyze DNA in the presence of some biological relevant metal ions suggesting different cleavage mechanisms were carried out. Extensive DNA sequencing studies on cleavage patterns with oligonucleotide duplexes confirmed the unique sequence selectivity and kinetic properties of F2. Two engrailed homeodomain target sites, TAATTA, were favored for hydrolytic activity corresponding to one domain acting as a DNA anchor on the first target site while the other was an "opportunist" at recognizing the second site. Nonetheless, the hydrolytic behavior at the phosphodiester bond on a specific dsDNA sequence is in good agreement with the behavior of restriction endonucleases. Unlike restriction enzymes, metallated F2 has not only demonstrated the ability to cleave DNA plasmid, but it also excises the entire nucleotide on a selected sequence. This homodimer is the first example of an active and selective hydrolytic artificial nuclease based on the modular turn substitution design approach that can be a potential template for genomic modification.
2

Hox Specificity: Constrained vs. Flexible Requirements for the PBC and MEIS Cofactors

Uhl, Juli D. 17 October 2014 (has links)
No description available.
3

Structural and functional studies of biomolecules with NMR and CD spectroscopy.

Papadopoulos, Evangelos January 2008 (has links)
<p>Experimentally derived biomolecular structures were determined by Nuclear Magnetic Resonance (NMR). The properties of selected peptides and proteins in solution and in membrane mimicking micelles were observed by circular Dichroism (CD), mass spectrometry (MS), and other spectroscopic techniques.</p><p>The mDpl(1-30) peptide (30 residues) of the mouse Doppel protein was found to be positioned as an α-helix in a DHPC micelle. The same peptide can disrupt and cause leakage in small unilamellar vesicles.</p><p>Single D-amino acid isomers of Trp-cage (20 residues), the smallest peptide with a protein-like fold, were analyzed by CD spectroscopy and were found to have different secondary structures and melting temperatures. They were compared against MS measurements specially designed to reveal the secondary structure of proteins.</p><p>We studied a novel protein in E. coli of unknown structure that is encoded by the putative transcription factor ORF: ygiT (131 residues). This protein comprises a helix-turn-helix (HTH) domain in the C-terminus and contains two CxxC motives in the N-terminal domain, which binds Zn. This protein was named 2CxxC. We succeeded in overexpressing and purifying 2CxxC in E. coli with enough yield for a 13C, 15N uniformly labeled NMR sample. The chemical shift assignment was completed and the NMR structure was calculated in reducing, slightly acidic conditions (1mM DTT, pH 5.5). The determined HTH domain shows good similarity with structures predicted by a homology search, while the N-terminal domain has no other homologous structure in the Protein Data Bank (PDB).</p><p>The structure of the paddle region (27 residues) of the HsapBK(233-260) voltage and Ca+2 activated potassium channel, in DPC micelles, was determined by NMR. It shows a helix-turn-helix loop, which agrees well with the expected structure and could help to verify the proposed models of the voltage gating mechanism.</p><p>The C-repressor (dimer of 99 residues) of bacteriophage P2 was analyzed by NMR. We assigned the chemical shifts and NMR structure determination is under way.</p>
4

Structural and functional studies of biomolecules with NMR and CD spectroscopy.

Papadopoulos, Evangelos January 2008 (has links)
Experimentally derived biomolecular structures were determined by Nuclear Magnetic Resonance (NMR). The properties of selected peptides and proteins in solution and in membrane mimicking micelles were observed by circular Dichroism (CD), mass spectrometry (MS), and other spectroscopic techniques. The mDpl(1-30) peptide (30 residues) of the mouse Doppel protein was found to be positioned as an α-helix in a DHPC micelle. The same peptide can disrupt and cause leakage in small unilamellar vesicles. Single D-amino acid isomers of Trp-cage (20 residues), the smallest peptide with a protein-like fold, were analyzed by CD spectroscopy and were found to have different secondary structures and melting temperatures. They were compared against MS measurements specially designed to reveal the secondary structure of proteins. We studied a novel protein in E. coli of unknown structure that is encoded by the putative transcription factor ORF: ygiT (131 residues). This protein comprises a helix-turn-helix (HTH) domain in the C-terminus and contains two CxxC motives in the N-terminal domain, which binds Zn. This protein was named 2CxxC. We succeeded in overexpressing and purifying 2CxxC in E. coli with enough yield for a 13C, 15N uniformly labeled NMR sample. The chemical shift assignment was completed and the NMR structure was calculated in reducing, slightly acidic conditions (1mM DTT, pH 5.5). The determined HTH domain shows good similarity with structures predicted by a homology search, while the N-terminal domain has no other homologous structure in the Protein Data Bank (PDB). The structure of the paddle region (27 residues) of the HsapBK(233-260) voltage and Ca+2 activated potassium channel, in DPC micelles, was determined by NMR. It shows a helix-turn-helix loop, which agrees well with the expected structure and could help to verify the proposed models of the voltage gating mechanism. The C-repressor (dimer of 99 residues) of bacteriophage P2 was analyzed by NMR. We assigned the chemical shifts and NMR structure determination is under way.
5

An investigation of the measurement accuracy and productivity of a Waratah HTH 625c Processor Head

Saathof, David January 2014 (has links)
Log processor heads have become increasingly used in New Zealand (NZ) forest harvesting operations to increase productivity and improve worker safety. Information regarding the measurement accuracy and productivity of new model processor heads is limited. As a result, log quality control (QC) is carried out on logs that have been merchandised by a processor head. This task can have a high risk for injury from man – machine interaction. A trend between studies was that older model Waratah’s did not have sufficient measurement accuracy to alleviate the requirement for log QC. In this study, a Waratah HTH 625c processor head operating in NZ was analysed for measurement accuracy and productivity. Measurement accuracy was considered by measuring logs for length, diameter and branch size. A comparison of two methods of processing was also considered to determine measurement accuracy, productivity and production efficiency for the way logs are delimbed and merchandised. Once gathered, the data was then analysed to identify significant effects, trends and relationships between variables. Length measurements were highly accurate but diameter measurements were under- estimated. It was also evident that although there was absolute accuracy, there was a high variability in measurements with underestimating and overestimating. Branch size was also found to have a significant impact in reducing length measurement accuracy and productivity. Single pass processing has significantly higher production efficiency than two pass processing, although single pass processing had a higher length error associated with it. The Waratah HTH 625c processor head has better measurement accuracy than older model Waratah’s. However, logs are still cut out-of-spec which will require a log QC to identify. As measurement technology is further improved in processor heads, and improvements to NZ’s plantation resource (improved form and smaller branching) are realised at harvest age, measurement accuracy and productivity of log processor heads will further improve.
6

I. Collagen-like polypeptides. II. Helix-turn-helix peptides and turn mimetics

Dai, Nan 15 August 2008 (has links)
Collagen is one of the most important and abundant proteins in mammals. It consists of three left-handed PPII helixes coiled along a common axis to form a very compact right-handed super helix. The primary structure is shown to be (Gly-Xaa-Yaa)n repeats with high content of prolyl residues at both Xaa and Yaa positions. <i>Cis-trans</i> isomerization of the prolyl amide bonds is one of the rate-limiting steps during collagen triple helix folding. The conformationally locked alkene isosteres Fmoc-Gly-Ψ[(E)CH=C]-Pro-Hyp(tBu)-OH and Fmoc-Pro-Ψ[(E)CH=C]-Pro-OH were designed and synthesized. The synthesis of the Gly-Pro isostere had no stereo-control, and the two diastereomers of the tripeptide isostere Fmoc-Gly-Ψ[(E)CH=C]-Pro-Hyp(tBu)-OBn were separated by normal phase HPLC. Although the stereoselectivity of the asymmetric reduction was not good for the Pro-Pro isostere, the resulting diastereomers was separable by flash chromatography, and the absolute stereochemistry of the two diastereomers was determined by Mosher's method. The Gly-Pro alkenyl peptides, and their control peptide Ac-(Gly-Pro-Hyp)8-Gly-Gly-Tyr-NH2 were synthesized and purified. All three peptides showed a maximum around 225 nm and a minimum close to 200 nm in the CD spectra, which indicated the formation of PPII helixes. The Tm value of the control peptide was determined to be 50.0 °C. The peptide with Gly-Ψ[(E)CH=C]-L-Pro-Hyp as the guest triplet formed a stable triple helix with a Tm value of 28.3 °C. The peptide with Gly-Ψ[(E)CH=C]-D-Pro-Hyp as the guest triplet showed a linear decrease in the ellipticity with increasing temperature, which indicated that no triple helix was formed. The Pro-Pro alkenyl peptide and its control peptide H-(Pro-Pro-Gly)₁₀-OH were synthesized and purified. The T<sub>m</sub> value of control peptide was determined to be 31.6 °C by extrapolation to 0 M TMAO in PBS buffer, which was very close to the measured value of 31.5 °C. The Pro-Pro alkenyl peptide began to show a maximum around 225 nm in the CD spectra when the concentration of TMAO was higher than 2.5 M. After extrapolation to 0 M TMAO, the T<sub>m</sub> value was determined to be –22.0 °C. These results indicate that the backbone inter-chain hydrogen bond is one of the major forces in stabilizing the collagen triple helix, while <i>cis-trans</i> isomerization has limited contribution. The intrinsic properties of the amide bond may have huge influence on the stability of the collagen triple helix. The helix-turn-helix motif is an important tertiary structure in DNA-binding proteins. Stepwise modifications of the Antennapedia HTH peptide (27-55) were performed to improve the helicity and stability. The peptide with more side-chain ion-pairs was over 4 times more helical than the native Antp peptide, while the Ala-based peptide was over 9 times more helical than the native peptide. A 12-membered ring, Fmoc-protected HTH-turn mimic was designed and synthesized, and was ready for solid phase peptide synthesis. The solubility of the cyclic peptide was very poor, and the purification of the final product was very difficult. The solubility problem might also affect solid phase peptide synthesis in the future. / Ph. D.
7

Nucleic Acid-binding Adenylyl Cyclases in Mycobacteria : Studies on Evolutionary & Biochemical Aspects

Zaveri, Anisha January 2016 (has links) (PDF)
Mycobacterium tuberculosis is one of the most successful human pathogens, estimated to have infected close to one-third of the global human population. In order to survive within its host, M. tuberculosis utilises multiple signalling strategies, one of them being synthesis and secretion of universal second messenger cAMP. This process is enabled by the presence of sixteen predicted adenylyl cyclases in the genome of M. tuberculosis H37Rv, ten of which have been characterised in vitro. The synthesized cAMP is recognised by ten putative cAMP-binding proteins in which the cyclic AMP-binding domain is associated with a variety of enzymatic domains. The cAMP signal can be extinguished by degradation by phosphodiesterase’s, secretion into the extracellular milieu or via sequestration of the nucleotide by upregulation of a high-affinity cAMP-binding protein. Of the sixteen adenylyl cyclases (ACs) encoded by M. tuberculosis H37Rv, a subset of multidomain adenylyl cyclases remain poorly characterised, primarily due to challenges associated with studying these in vitro. The adenylyl cyclase domain in these proteins is associated with an NB-ARC domain (nucleotide binding domain common to APAF-1, plant R proteins and CED-4), a TPR domain (tetratricopeptide repeat) and an LuxR-type HTH motif (helix-turn-helix). This architecture places these multidomain mycobacterial ACs within a larger group of STAND (Signal transduction ATPase’s with numerous domains) proteins, and hence they will be referred to as STAND ACs. The STAND proteins are a recently recognised class of multidomain ATPases which integrate a variety of signals prior to activation. Activation is accompanied by formation of large oligomeric signalling hubs which facilitate downstream signalling events. While most STAND proteins have a single effector domain followed by an NB-ARC domain and a scaffolding domain, the STAND ACs distinguish themselves by retaining two effector domains, the AC domain and the HTH domain, at the N- and C- termini respectively. The cyclase, NB-ARC, TPR and HTH domains have widely divergent taxonomic distributions making the presence of these four domains in a single polypeptide rare. In fact, proteins with cyclase-NB-ARC-TPR-HTH (C-A-T-H) domain organisation were found to be encoded almost exclusively by slow growing mycobacterial species, a clade that harbours most mycobacterial pathogens, such as M. tuberculosis and M. leprae. Notably, one of the STAND ACs, Rv0386, is the only mycobacterial AC shown till date to be required for virulence of M. tuberculosis in mice. Using phylogenetic, the evolutionary underpinnings of this domain architecture were examined. The STAND ACs appear to have most likely evolved via a domain gain event from a cyclase-ATPase-TPR progenitor encoded by a strain ancestral to M. marina. Subsequently, the genes duplicated and diverged, sometimes leading to frameshift mutations splitting the cyclase domain from the C-terminal domains. Consequently, M. tuberculosis encodes for three ‘full-length’ STAND ACs, namely, Rv0386, Rv1358 and Rv2488c and one split STAND AC. The split STAND AC is made up of Rv0891c, containing the AC domain, and Rv0890c, containing the NB-ARC, TPR and HTH domains. rv0891c and rv0890c were found to be expressed as an operatic transcript, though they were translationally uncoupled. Pertinently, M. Canetti, an early-branching species of the M. tuberculosis complex, contains an orthologue of Rv0891c and Rv0890c where all four domains are present in a single polypeptide. Sequence analysis of the four STAND ACs in M. tuberculosis allowed predictions of significant divergence in function. These proteins showed high sequence conservation in their HTH domains, with substantial sequence divergence in their TPR, NB-ARC and AC domains. Biochemical analysis on the AC domains revealed that Rv0891c and Rv2488c possessed poor or no AC activity, respectively. On the other hand, the cyclase domain of Rv0386 could catalyse cAMP synthesis. Moreover, for both Rv0891c and Rv0386, presence of the C-terminal domains potentiated adenylyl cyclase activity, suggestive of allosteric regulation within the STAND AC module. Studies on Rv0891c also revealed that the protein could inhibit the adenylyl cyclase activity of Rv0386 in trans. This result thus provided a novel mechanism by which proteins harbouring poorly active/inactive adenylyl cyclase domains could contribute to cAMP levels, by acting as inhibitors of other adenylyl cyclases. The STAND ACs were found to be inactive ATPases. Additionally, incubation with nucleotides did not stimulate oligomerisation of these proteins, unlike what has been shown for several other STAND proteins. However, mutations in the NB-ARC domain perturbed the basal oligomeric state of these proteins, indicating that the NB-ARC domain can influence self- association. A subset of NB-ARC domain mutants also showed increased adenylyl cyclase activity, reiterating the inter-domain cross-talk in the STAND ACs. Since the AC activity of these proteins was meagre, the properties of the HTH domain were examined, as an alternative effector domain. Genomic SELEX was performed using the TPR-HTH domains of Rv0890c, and revealed a set of sequences that bound to this protein, though they lacked common sequence features. Further analysis revealed that Rv0890c bound to DNA in a sequence-independent manner, through the HTH domain. This binding was cooperative with multiple protein units engaging in DNA-binding. Due to the cooperative nature of binding and the lack of sequence preference, Rv0890c appeared coat the DNA molecule. This was further proved by the ability of Rv0890c to protect DNA from DNaseI-mediated degradation, and the requirement for long DNA sequences to form stable DNA-protein complexes. Studies also revealed that Rv0890c interacted with RNA and ssDNA. In fact, the protein as purified from heterologously expressing E. coli cells was bound to RNA. RNA-binding by a LuxR-type HTH has not been reported previously, providing a new function for this class of HTHs. Interestingly, nucleic acid-binding by a fusion Rv0891c-Rv0890c protein, similar to the one encoded in M. canetti, was shown to stimulate adenylyl cyclase activity. This was likely due to a relief of inhibitory interactions between the TPR-HTH and the AC domains, on DNA-binding. Given the high sequence similarity between the HTH domains of the STAND ACs, they were expected to bind to DNA in an identical manner. Indeed, the HTH domains of Rv0386 and Rv1358 engaged with DNA with an identical affinity as Rv0890c. Sequence comparisons in the HTH domain enabled identification of conserved basic residues, of which one, R850 was essential for nucleic acid-binding. Surprisingly however, Rv0386 and Rv1358 did not exhibit RNA-binding, pointing towards functional divergence of Rv0890c from its paralogues. Since the HTH domains of the STAND ACs were highly conserved, it was possible that the ability to bind to RNA was instead dictated by the adjacent TPR modules. To examine this possibility, TPR domains were swapped between Rv0890c and Rv0386. Interestingly, both the chimeric proteins showed a reduced ability to bind to DNA, while showing a complete absence of RNA- binding. These results suggested that the TPR domains were critical in modulating nucleic acid-binding. Moreover, the effect of the TPR domain was context-dependent, since the presence of non-cognate TPR domains hampered nucleic acid-binding. However, the ability to bind to RNA was not solely governed by the TPR domain since the Rv0890cTPR-Rv0386HTH chimeric protein did not show RNA-binding, in spite of containing a permissive TPR domain. To further dissect the molecular requirements for RNA-binding, the conservation of basic residues between the HTH domains of Rv0890c versus Rv1358 and Rv0386 was examined. Interestingly the HTH domain Rv0890c contained two additional positively charged residues over Rv1358 and Rv0386. Mutations of these abolished RNA-binding by Rv0890c. Thus the evolution of two basic residues permit Rv0890c to diverge in its nucleic acid-binding properties, a possible example of defunctionalisation following gene duplication. In summary, this thesis attempts to understand the evolution and functions of the STAND ACs, a group of pathogenically relevant and uniquely mycobacterial multidomain proteins. Phylogenetic analysis revealed an expansion of this gene family in slow growing mycobacteria. Biochemical characterisation showed that following gene duplication, the resulting proteins diverge both in their ability to synthesize cAMP and in their association with nucleic acids. Studies on these proteins also revealed novel mechanisms of regulation of mycobacterial cAMP levels. Additionally, these proteins exhibited indiscriminate binding to DNA/nucleic acids indicating that they may be responsible for global functions in the cell which extend beyond cAMP synthesis.
8

Étude de la fusion humaine NUP98-HOXA9 chez la drosophile

Gavory, Gwenaëlle 12 1900 (has links)
No description available.

Page generated in 0.0547 seconds