• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inverse Kinematics and Extended Kalman Filter based Motion Tracking of Human Limb

Isaac, Benson 13 October 2014 (has links)
No description available.
2

Articulated Human Movements Tracking Through Online Discriminative Learning

Kyuseo Han (8715537) 17 April 2020 (has links)
In this thesis, we present a new class of object trackers that are based ona boosted Multiple Instance Learning (MIL) algorithm to track an object in a video sequence. We show how the scope of such trackers can be expanded to the tracking of articulated movements by humans that frequently<br>result in large frame-to-frame variations in the appearance of what needs to be tracked. To deal with the problems caused by such variations, we present a component-based MIL (CMIL) algorithm with boosted learning. The components are the output of an image segmentation algorithm and give the boosted MIL the additional degrees of freedom that it needs in order to deal with the large frame-to-frame variations associated with articulated movements. Furthermore we explored two enhancements of the basic CMIL tracking algorithm. The first is based on an extended definition of positive learning samples for CMIL tracking. This extended definition can filter out false-positive learning samples in order to increase the robustness of CMIL tracking. The second enhancement is based on a combined motion prediction framework with the basic CMIL tracking for resolving issues arising from large and rapid translational human movements. The need for appropriate motion transition can be satisfied by probabilistic modeling of motion. Experimental results show that the proposed approaches yield robust tracking performances in various tracking environments, such as articulate human movements as well as ground human movements observed from aerial vehicles.
3

HUMAN ACTIVITY TRACKING AND RECOGNITION USING KINECT SENSOR

Lun, Roanna January 2017 (has links)
No description available.
4

Human Motion Tracking Using 3D Camera / Följning av människa med 3D-kamera

Karlsson, Daniel January 2010 (has links)
<p>The interest in video surveillance has increased in recent years. Cameras are now installed in e.g. stores, arenas and prisons. The video data is analyzed to detect abnormal or undesirable events such as thefts, fights and escapes. At the Informatics Unit at the division of Information Systems, FOI in Linköping, algorithms are developed for automatic detection and tracking of humans in video data. This thesis deals with the target tracking problem when a 3D camera is used. A 3D camera creates images whose pixels represent the ranges to the scene. In recent years, new camera systems have emerged where the range images are delivered at up to video rate (30 Hz). One goal of the thesis is to determine how range data affects the frequency with which the measurement update part of the tracking algorithm must be performed. Performance of the 2D tracker and the 3D tracker are evaluated with both simulated data and measured data from a 3D camera. It is concluded that the errors in the estimated image coordinates are independent of whether range data is available or not. The small angle and the relatively large distance to the target explains the good performance of the 2D tracker. The 3D tracker however shows superior tracking ability (much smaller tracking error) if the comparison is made in the world coordinates.</p>
5

Human Motion Tracking Using 3D Camera / Följning av människa med 3D-kamera

Karlsson, Daniel January 2010 (has links)
The interest in video surveillance has increased in recent years. Cameras are now installed in e.g. stores, arenas and prisons. The video data is analyzed to detect abnormal or undesirable events such as thefts, fights and escapes. At the Informatics Unit at the division of Information Systems, FOI in Linköping, algorithms are developed for automatic detection and tracking of humans in video data. This thesis deals with the target tracking problem when a 3D camera is used. A 3D camera creates images whose pixels represent the ranges to the scene. In recent years, new camera systems have emerged where the range images are delivered at up to video rate (30 Hz). One goal of the thesis is to determine how range data affects the frequency with which the measurement update part of the tracking algorithm must be performed. Performance of the 2D tracker and the 3D tracker are evaluated with both simulated data and measured data from a 3D camera. It is concluded that the errors in the estimated image coordinates are independent of whether range data is available or not. The small angle and the relatively large distance to the target explains the good performance of the 2D tracker. The 3D tracker however shows superior tracking ability (much smaller tracking error) if the comparison is made in the world coordinates.
6

Kalman Filter Based Approach : Real-time Control-based Human Motion Prediction in Teleoperation / Kalman Filter baserad metod : Realtids uppskattningar av Kontrollbaserad Mänsklig Rörelse i Teleoperationen

Fan, Zheyu Jerry January 2016 (has links)
This work is to investigate the performance of two Kalman Filter Algorithms, namely Linear Kalman Filter and Extended Kalman Filter on control-based human motion prediction in a real-time teleoperation. The Kalman Filter Algorithm has been widely used in research areas of motion tracking and GPS-navigation. However, the potential of human motion prediction by utilizing this algorithm is rarely being mentioned. Combine with the known issue - the delay issue in today’s teleoperation services, the author decided to build a prototype of simple teleoperation model based on the Kalman Filter Algorithm with the aim of eliminated the unsynchronization between the user’s inputs and the visual frames, where all the data were transferred over the network. In the first part of the thesis, two types of Kalman Filter Algorithm are applied on the prototype to predict the movement of the robotic arm based on the user’s motion applied on a Haptic Device. The comparisons in performance among the Kalman Filters have also been focused. In the second part, the thesis focuses on optimizing the motion prediction which based on the results of Kalman filtering by using the smoothing algorithm. The last part of the thesis examines the limitation of the prototype, such as how much the delays are accepted and how fast the movement speed of the Phantom Haptic can be, to still be able to obtain reasonable predations with acceptable error rate.   The results show that the Extended Kalman Filter has achieved more advantages in motion prediction than the Linear Kalman Filter during the experiments. The unsynchronization issue has been effectively improved by applying the Kalman Filter Algorithm on both state and measurement models when the latency is set to below 200 milliseconds. The additional smoothing algorithm further increases the accuracy. More important, it also solves shaking issue on the visual frames on robotic arm which is caused by the wavy property of the Kalman Filter Algorithm. Furthermore, the optimization method effectively synchronizes the timing when robotic arm touches the interactable object in the prediction.   The method which is utilized in this research can be a good reference for the future researches in control-based human motion tracking and prediction. / Detta arbete fokuserar på att undersöka prestandan hos två Kalman Filter Algoritmer, nämligen Linear Kalman Filter och Extended Kalman Filter som används i realtids uppskattningar av kontrollbaserad mänsklig rörelse i teleoperationen. Dessa Kalman Filter Algoritmer har används i stor utsträckning forskningsområden i rörelsespårning och GPS-navigering. Emellertid är potentialen i uppskattning av mänsklig rörelse genom att utnyttja denna algoritm sällan nämnas. Genom att kombinera med det kända problemet – fördröjningsproblem i dagens teleoperation tjänster beslutar författaren att bygga en prototyp av en enkel teleoperation modell vilket är baserad på Kalman Filter algoritmen i syftet att eliminera icke-synkronisering mellan användarens inmatningssignaler och visuella information, där alla data överfördes via nätverket. I den första delen av avhandlingen appliceras både Kalman Filter Algoritmer på prototypen för att uppskatta rörelsen av robotarmen baserat på användarens rörelse som anbringas på en haptik enhet. Jämförelserna i prestandan bland de Kalman Filter Algoritmerna har också fokuserats. I den andra delen fokuserar avhandlingen på att optimera uppskattningar av rörelsen som baserat på resultaten av Kalman-filtrering med hjälp av en utjämningsalgoritm. Den sista delen av avhandlingen undersökes begräsning av prototypen, som till exempel hur mycket fördröjningar accepteras och hur snabbt den haptik enheten kan vara, för att kunna erhålla skäliga uppskattningar med acceptabel felfrekvens.   Resultaten visar att den Extended Kalman Filter har bättre prestandan i rörelse uppskattningarna än den Linear Kalman Filter under experimenten. Det icke-synkroniseringsproblemet har förbättrats genom att tillämpa de Kalman Filter Algoritmerna på både statliga och värderingsmodeller när latensen är inställd på under 200 millisekunder. Den extra utjämningsalgoritmen ökar ytterligare noggrannheten. Denna algoritm löser också det skakande problem hos de visuella bilder på robotarmen som orsakas av den vågiga egenskapen hos Kalman Filter Algoritmen. Dessutom effektivt synkroniserar den optimeringsmetoden tidpunkten när robotarmen berör objekten i uppskattningarna.   Den metod som används i denna forskning kan vara en god referens för framtida undersökningar i kontrollbaserad rörelse- spåning och uppskattning.

Page generated in 0.0904 seconds