• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 12
  • 10
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Faktorer som påverkar värdet för småhus i Stockholms län / Factors that affect the value of houses in Stockholm county

Irell Fridlund, Albin, Cederberg, Idun January 2021 (has links)
I den här rapporten undersöks hur geografiskt läge, fastighetens fysiska egenskaper och ägandeform påverkar priset för småhus i Stockholms län. Målet med undersökningen är att ta fram en modell, baserad på de faktorer som påverkar bostadspriset mest, som kan användas för att uppskatta en fastighets värde. Undersökningen är baserad på data för småhus som sålts i Stockholms län 2020. Datasetet som används har erhållits av Booli. Efter att datasetet kontrollerats och vid behov anpassats för att uppfylla antaganden för multipel linjär regression, så tillämpas multipel linjär regression. Framåtselektion används för att ta fram de faktorer som starkast påverkar priset och därmed bör ingå i den slutliga modellen. Resultat från undersökningen visar att levnadsyta är den faktor som starkast påverkar priset på småhus i Stockholms län. Vidare bidrar även faktorer som avstånd till vatten, konstruktionsår och vilken kommun huset är beläget i. Slutligen diskuteras även vilken betydelse undersökningen och modellen som tas fram kan tänkas ha för större fastighetsägare. / This report investigates how geographic position, physical attributes of the property and form of ownership affect the price of houses in Stockholm County. The research goal is to develop a model, based on the factors with the strongest impact on house prices, which can be used to estimate the value of a property. The investigation is based on data of sold houses in Stockholm County in 2020. The dataset was obtained from Booli. After relevant adjustments of the dataset have been made, in order to satisfy the assumptions of multiple linear regression, multiple linear regression was applied. Thereafter, forward selection was used to determine which factors to include in the final model. The results indicate that living area is the factor with the highest impact on property prices. Furthermore, other important factors are distance to water, construction year and which municipality the property is situated in. Finally, the importance of the investigation and the model for larger property owners is discussed.
12

Predicting House Prices on the Countryside using Boosted Decision Trees / Förutseende av huspriser på landsbygden genom boostade beslutsträd

Revend, War January 2020 (has links)
This thesis intends to evaluate the feasibility of supervised learning models for predicting house prices on the countryside of South Sweden. It is essential for mortgage lenders to have accurate housing valuation algorithms and the current model offered by Booli is not accurate enough when evaluating residence prices on the countryside. Different types of boosted decision trees were implemented to address this issue and their performances were compared to traditional machine learning methods. These different types of supervised learning models were implemented in order to find the best model with regards to relevant evaluation metrics such as root-mean-squared error (RMSE) and mean absolute percentage error (MAPE). The implemented models were ridge regression, lasso regression, random forest, AdaBoost, gradient boosting, CatBoost, XGBoost, and LightGBM. All these models were benchmarked against Booli's current housing valuation algorithms which are based on a k-NN model. The results from this thesis indicated that the LightGBM model is the optimal one as it had the best overall performance with respect to the chosen evaluation metrics. When comparing the LightGBM model to the benchmark, the performance was overall better, the LightGBM model had an RMSE score of 0.330 compared to 0.358 for the Booli model, indicating that there is a potential of using boosted decision trees to improve the predictive accuracy of residence prices on the countryside. / Denna uppsats ämnar utvärdera genomförbarheten hos olika övervakade inlärningsmodeller för att förutse huspriser på landsbygden i Södra Sverige. Det är viktigt för bostadslånsgivare att ha noggranna algoritmer när de värderar bostäder, den nuvarande modellen som Booli erbjuder har dålig precision när det gäller värderingar av bostäder på landsbygden. Olika typer av boostade beslutsträd implementerades för att ta itu med denna fråga och deras prestanda jämfördes med traditionella maskininlärningsmetoder. Dessa olika typer av övervakad inlärningsmodeller implementerades för att hitta den bästa modellen med avseende på relevanta prestationsmått som t.ex. root-mean-squared error (RMSE) och mean absolute percentage error (MAPE). De övervakade inlärningsmodellerna var ridge regression, lasso regression, random forest, AdaBoost, gradient boosting, CatBoost, XGBoost, and LightGBM. Samtliga algoritmers prestanda jämförs med Boolis nuvarande bostadsvärderingsalgoritm, som är baserade på en k-NN modell. Resultatet från denna uppsats visar att LightGBM modellen är den optimala modellen för att värdera husen på landsbygden eftersom den hade den bästa totala prestandan med avseende på de utvalda utvärderingsmetoderna. LightGBM modellen jämfördes med Booli modellen där prestandan av LightGBM modellen var i överlag bättre, där LightGBM modellen hade ett RMSE värde på 0.330 jämfört med Booli modellen som hade ett RMSE värde på 0.358. Vilket indikerar att det finns en potential att använda boostade beslutsträd för att förbättra noggrannheten i förutsägelserna av huspriser på landsbygden.

Page generated in 0.0356 seconds