• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Designing Bio-Ink for Extrusion Based Bio-Printing Process

Habib, MD Ahasan January 2019 (has links)
Tissue regeneration using in-vitro scaffold becomes a vital mean to mimic the in-vivo counterpart due to the insufficiency of animal models to predict the applicability of drug and other physiological behavior. Three-dimensional (3D) bio-printing is an emerging technology to reproduce living tissue through controlled allocation of biomaterial and cell. Due to its bio-compatibility, natural hydrogels are commonly considered as the scaffold material in bio-printing process. However, repeatable scaffold structure with good printability and shape fidelity is a challenge with hydrogel material due to weak bonding in polymer chain. Additionally, there are intrinsic limitations for bio-printing of hydrogels due to limited cell proliferation and colonization while cells are immobilized within hydrogels and don’t spread, stretch and migrate to generate new tissue. The goal of this research is to develop a bio-ink suitable for extrusion-based bio-printing process to construct 3D scaffold. In this research, a novel hybrid hydrogel, is designed and systematic quantitative characterization are conducted to validate its printability, shape fidelity and cell viability. The outcomes are measured and quantified which demonstrate the favorable printability and shape fidelity of our proposed material. The research focuses on factors associated with pre-printing, printing and post-printing behavior of bio-ink and their biology. With the proposed hybrid hydrogel, 2 cm tall acellular 3D scaffold is fabricated with proper shape fidelity. Cell viability of the proposed material are tested with multiple cell lines i.e. BxPC3, prostate stem cancer cell, HEK 293, and Porc1 cell and about 90% viability after 15-day incubation have been achieved. The designed hybrid hydrogel demonstrate excellent behavior as bio-ink for bio-printing process which can reproduce scaffold with proper printability, shape fidelity and higher cell survivability. Additionally, the outlined characterization techniques proposed here open-up a novel avenue for quantifiable bio-ink assessment framework in lieu of their qualitative evaluation.
2

Silk fibroin-reinforced hydrogels for growth factor delivery and In Vitro cell culture

Bragg, John Campbell 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / A variety of polymers of synthetic origins (e.g., poly(ethylene glycol) or PEG) and naturally derived macromolecules (e.g., silk fibroin or gelatin) have been explored as the backbone materials for hydrogel crosslinking. Purely synthetic hydrogels are usually inert, covalently crosslinked, and have limited degradability unless degradable macromers are synthesized and incorporated into the hydrogel network. Conversely, naturally derived macromers often contain bioactive motifs that can provide biomimicry to the resulting hydrogels. However, hydrogels fabricated from a single macromer often have limitations inherent to the macromer itself. For example, to obtain high modulus PEG-based hydrogels requires an increase in macromer and crosslinker content. This is associated with an increase in radical concentration during polymerization which may cause death of encapsulated cells. Pure gelatin (G) hydrogels have weak mechanical properties and gelatin undergoes thermo-reversible physical gelation. Covalent crosslinking is usually necessary to produce stable gelatin hydrogels, particularly at physiological temperatures. The limitations of these hydrogels may be circumvented by combining them with another macromer (e.g., silk fibroin) to form hybrid hydrogels. Silk fibroin (SF) from Bombyx mori silkworms offers high mechanical strength, slow enzymatic degradability, and can easily form physical hydrogels. The first objective of this thesis was to evaluate the effect of sonication and the presence of synthetic polymer (e.g., poly (ethylene glycol) diacrylate or PEGDA) or natural macromer (e.g., gelatin) on SF physical gelation kinetics. SF physical gelation was assessed qualitatively via tilt tests. Gelation of pure SF solutions was compared to mixtures of SF and PEGDA or G, both with or without sonication of SF prior to mixing. The effect of gelatin on SF gelation was also evaluated quantitatively via real time in situ rheometry. Sonication accelerated gelation of SF from days to hours or minutes depending on SF concentration and sonication intensity. Both PEGDA and G were shown to accelerate SF physical gelation when added to SF and sonicated SF (SSF) solutions. The second objective was to develop a simple strategy to modulate covalently crosslinked PEG-based hydrogel properties by physically entrapping silk fibroin. The physical entrapment of silk fibroin provides an alternative method to increase gel storage modulus (G’) without the cytotoxic effect of increasing macromer and crosslinker concentration, or altering degradation kinetics by increasing co-monomer concentration. The effect of SF entrapment on gel physical and mechanical properties, as well as hydrolytic degradation and chemical gelation kinetics were characterized. SF physical crosslinking within the PEG-based network was shown to increase gel storage moduli by two days after gel fabrication. There was no change hydrolytic degradation rate associated with the increased moduli. SF entrapment did not affect gelation efficiency, but did alter gel physical properties. The third objective of this thesis was to develop a silk-gelatin in situ forming hybrid hydrogel for affinity-based growth factor sequestration and release and in vitro cell culture. SF provides mechanical strength and stability, whereas G contains bioactive motifs that can provide biomimicry to the gel network. Hydrogel G’ and its dependency on temperature, SF processing conditions, and secondary in situ chemical crosslinking (i.e., genipin crosslinking) were studied. Gelatin can be conjugated with heparin, a glycosaminoglycan, to impart growth factor (GF) binding affinity. Growth factor sequestration and release were evaluated in a pair of designed experiments. The hybrid gels were evaluated as substrates for human mesenchymal stem cell proliferation.

Page generated in 0.0493 seconds