• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 12
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 79
  • 79
  • 14
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hybrid Model for Monitoring and Optimization of Distillation Columns

Aljuhani, Fahad January 2016 (has links)
Distillation columns are primary equipment in petrochemical, gas plants and refineries. Distillation columns energy consumption is estimated to be 40% of the total plant energy consumption. Optimization of distillation columns has potential for saving large amount of energy and contributes to plant wide optimization. Currently rigorous tray to tray models are used to describe columns separation with high accuracy. Rigorous distillation models are being used as part of design, optimization and as a part of on-line real-time optimization applications. Due to large number of nonlinear equations, rigorous distillation models are not suitable for inclusion in optimization models of complex plants (e.g. refineries), since they would make the model too large. For this reason, current practice in plant-wide optimization for planning or for scheduling is to include simplified model. Accuracy of these simplified models is significantly lower than the accuracy of the rigorous models, thereby causing discrepancy between production planning and RTO decisions. This work describes reduced size hybrid model of distillation columns, suitable for use as stand-alone tool for individual column or as part of a complete plant model, either for RTO or for production planning. Hybrid models are comprised of first principles material and energy balances and empirical models describing separation in the column. Hybrid models can be used for production planning, scheduling and optimization. In addition this work describes inferential model development for estimating streams purity using real time data. Inferential model eliminates the need for Gas Chromatography GC analyzers and can be used for monitoring and control purposes. Predictions from the models are sufficiently accurate and small size of the models enable significant reduction in size of the total plant models. / Thesis / Master of Applied Science (MASc)
2

Disulfide Bond Prediction with Hybrid Models

Wang, Chong-Jie 06 September 2011 (has links)
Disulfide bonds are special covalent cross links between two cysteines in a protein. This kind of bonding state plays an important role in protein folding and stabilization. For connectivity pattern prediction, it is a very difficult problem because of the fast growth of possible patterns with respect to the number of cysteines. In this thesis, we propose a new approach to address this problem. The method is based on hybrid models with SVM. Via this strategy, we can improve the prediction accuracies by selecting appropriate models. In order to evaluate the performance of our method, we apply the method by 4-fold cross-validation on SP39 dataset, which contains 446 proteins. We achieve accuracies with 70.8% and 65.9% for pair-wise and pattern-wise prediction respectively, which is better than the previous works.
3

Study on Reliable Vehicular Communication for Urban and Highway Traffic Mobility

Nadella, Sai Anoop, Araga, Nikhil Reddy January 2016 (has links)
Due to its extensive applications, VANETs had emerged as one of the important research areas in wireless networks. The main motto of vehicular technologies is to enhance traffic management by improving safety and also provide a reliable data exchange and information services among vehicles.   Vehicular communications is a co-operative technology that enables communication among different vehicles, infrastructure and other devices. V2V, V2I communication models are commonly used in vehicular networks. Recently, extensive research is being performed on hybrid model which integrates both V2V and V2I models. The main goal of this research is to study the nature of these communication models in an urban and highway traffic environment and suggest a simulated model which helps to which provide reliable vehicular communication.   Literature study helps to gain knowledge on the background of vehicular networks. Later, a simulated model is designed with the help of SUMO and NS-3 which implements all these communication models. The simulated model which is developed is classified into different phases and each phase represents a different communication model. Each phase is completely different from one another. All these phases are incorporated in both urban and highway traffic environments.   Performance metrics are evaluated and analyzed to study the behavior of these models. Throughput, PDR, Packet-Drop and Propagation-Delay are the performance metrics considered.   Simulation analysis shows that hybrid model exhibits a stable communication behavior when compared with V2V and V2I in both urban and highway traffic environments.
4

Hybrid model : investigating bilingual language production through code-switching

Selles, Anthony January 2018 (has links)
Bilingual language production is an area of psycholinguistic research that has received recent attention. Experimental evidence from bilingual word production tasks has shown that both languages share representation at the mental lexicon, meaning that concepts will lead to the activation of the target lemma from both languages. Investigations into how bilinguals organise two grammatical systems has largely come from cross-linguistic syntactic priming. Syntactic priming is a phenomenon in which speakers are likely to repeat a syntactic structure in which they have recently experienced: cross-linguistic syntactic priming is when a speaker uses a syntactic structure in one language because they have recently experienced that structure from the other language. Together, the study of the bilingual lexicon and syntactic representations have led to the development of models of bilingual language production. A more recent experimental paradigm is the forced code-switching task in which participants are required to code-switch in some experimental trials. The forced code-switching task is the experimental method used in this thesis. This thesis aims to use this experimental task to test my proposed model of bilingual language production, the Hybrid model. The Hybrid model proposes an architecture of the bilingual lemma stratum that differs from previous models of bilingual language production. The Hybrid model assumes that lexical items from one language can be produced using the syntactic structure of the other language. In this thesis I report seven experiments testing the proposed lemma stratum of the Hybrid model. Experiment 3.1 investigated the production of prenominal adjectives of English and postnominal adjectives of Spanish during code-switching between Spanish and English to see whether speakers would use the lexical items from one language with the word order of the other language. The results showed that speakers almost exclusively used the word order dictated by the language in which they produced the lexical items. This did not support the proposed lemma stratum of the Hybrid model. Experiments 4.1 and 4.2 investigated gender agreement of possessive pronouns during code-switching between Spanish and English to see if the possessive pronoun from one language could be produced using the gender agreement rules from the other language. The results showed that English-Spanish and Spanish-English bilinguals sometimes produced possessive pronouns in one language with the gender agreement rules from the other language. It was demonstrated that this effect was not due to a misunderstanding of the gender agreement rules of the participants' second language. These results support the proposed lemma stratum of the Hybrid model. Experiments 5.1 and 5.2 investigated gender agreement of possessive determiners during code-switching between French and English to see if the possessive determiner from one language could be produced using the gender agreement rules from the other language. The results showed that English-French and French-English bilinguals sometimes produced possessive determiners in one language with the gender agreement rules from the other language. It was demonstrated that this effect was not due to a misunderstanding of the gender agreement rules of the participants' second language. These results support the proposed lemma stratum of the Hybrid model. Experiments 6.1 and 6.2 investigated the production of determiners during code-switching between German and English. Of specific interest was whether English determiners would be produced more often than German determiners because German determiners hold case information whereas English determiners do not. In Experiment 6.1 participants were forced to code-switch before an accusative NP. The results showed that English determiners were sometimes produced within the German NPs, but German determiners were not used within the English NPs. In Experiment 6.2 participants were forced to code-switch before a dative NP. The results showed that participants almost exclusively produced the determiner in the same language as the target noun. Analysing the frequencies of the determiner used within the experimental session, the different pattern of results between Experiments 6.1 and 6.2 may be a result of a competition for selection between determiner forms. To conclude the thesis I discuss the implications of these findings, what they mean for the Hybrid model, and directions for future research.
5

Simulation and control of a Marnoch heat engine

Naughton, Ryan 01 April 2012 (has links)
The Marnoch heat engine (MHE) is a new type of heat engine currently under development at the University of Ontario Institute of Technology. The MHE can use waste or collected heat at temperatures that are currently unusable or not eco- nomically viable to use by conventional technologies. The MHE operates by using a heat source to heat the air in one heat exchanger and cool the air in another. This creates a pressure di erence. This pressure di erence drives a two-way piston connected to a ywheel. A generator connected to the ywheel converts the me- chanical energy of the ywheel into electricity. This thesis presents a simulation of the current MHE prototype. The simulation is designed to be easily customized to allow it to model the performance of future possible MHE installations and predict their performance. The simulation is shown to accurately model the performance of the MHE prototype by running under conditions similar to those found in the lab, and comparing its results to collected data from the prototype. Simulations were also run to show the model's ability to model possible applications with di erent operating conditions and physical components. / UOIT
6

A hybrid model to estimate natural recruitment and growth in stands following mountain pine beetle disturbance

Sattler, Derek Felix 05 1900 (has links)
A method of linking SORTIE-ND and PrognosisBC was developed for the purpose of predicting natural regeneration and forecasting future stand conditions in mountain pine beetle (Dendroctonus ponderosae Hopkins - MPB) attacked stands in the Interior Douglas-fir (IDF) and Sub-Boreal Spruce (SBS) biogeoclimatic ecosystem zones of central and southeastern British Columbia. PrognosisBC, a spatially-implicit growth model, lacked a submodel suitable for predicting natural regeneration in unsalvaged MPB-disturbed stands. To fill this gap, estimates of regeneration (trees <7.5 cm diameter at breast height - DBH) were supplied to PrognosisBC using the light-mediated forest dynamics model SORTIE-ND and the linked model was used to forecast future stand conditions. In order to improve results, a density-dependent system of crown allometry equations to predict crown depth and crown radius was developed and then added to SORTIE-ND. The equations used stand-level measures of stems ha-¹, basal area (m² ha-¹), and the basal area of trees taller than the target tree to explicitly account of the effects of crowding on the crown axes. Additionally, crown radius and crown depth were used as dependent regressors. The equations were fit using a nonlinear three-stage least squares estimator and generally provided good estimates of crown depth and crown radius for lodgepole pine (Pinus contorta var. latifolia), hybrid spruce (Picea engelmannii x glauca (Moench) Voss), Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and trembling aspen (Populus tremuloides Michx.). Tests of the hybrid model with the improved system of crown allometry equations were performed using reconstructed plot data collected from natural stands disturbed by MPB 25-years ago. The hybrid model provided good estimates (small mean bias and low root mean square error) for the basal area of advance regeneration (2 < DBH < 7.5 cm) for lodgepole pine (Pinus contorta var. latifolia). The best estimates were achieved when trees <7.5 cm DBH were transferred from SORTIE-ND to PrognosisBC 15-years after MPB-disturbance. For trees <2 m in height, poor estimates of stems ha-¹ where obtained. Despite the shortcomings with respect to trees <2 m tall, the results suggest that linking SORTIE-ND and PrognosisBC is an effective method of building a hybrid model capable of being used in MPB-disturbed forests. However, full parameterization of the SORTIE-ND model is likely needed to obtain accurate estimates for all sizes of natural regeneration.
7

A hybrid model to estimate natural recruitment and growth in stands following mountain pine beetle disturbance

Sattler, Derek Felix 05 1900 (has links)
A method of linking SORTIE-ND and PrognosisBC was developed for the purpose of predicting natural regeneration and forecasting future stand conditions in mountain pine beetle (Dendroctonus ponderosae Hopkins - MPB) attacked stands in the Interior Douglas-fir (IDF) and Sub-Boreal Spruce (SBS) biogeoclimatic ecosystem zones of central and southeastern British Columbia. PrognosisBC, a spatially-implicit growth model, lacked a submodel suitable for predicting natural regeneration in unsalvaged MPB-disturbed stands. To fill this gap, estimates of regeneration (trees <7.5 cm diameter at breast height - DBH) were supplied to PrognosisBC using the light-mediated forest dynamics model SORTIE-ND and the linked model was used to forecast future stand conditions. In order to improve results, a density-dependent system of crown allometry equations to predict crown depth and crown radius was developed and then added to SORTIE-ND. The equations used stand-level measures of stems ha-¹, basal area (m² ha-¹), and the basal area of trees taller than the target tree to explicitly account of the effects of crowding on the crown axes. Additionally, crown radius and crown depth were used as dependent regressors. The equations were fit using a nonlinear three-stage least squares estimator and generally provided good estimates of crown depth and crown radius for lodgepole pine (Pinus contorta var. latifolia), hybrid spruce (Picea engelmannii x glauca (Moench) Voss), Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and trembling aspen (Populus tremuloides Michx.). Tests of the hybrid model with the improved system of crown allometry equations were performed using reconstructed plot data collected from natural stands disturbed by MPB 25-years ago. The hybrid model provided good estimates (small mean bias and low root mean square error) for the basal area of advance regeneration (2 < DBH < 7.5 cm) for lodgepole pine (Pinus contorta var. latifolia). The best estimates were achieved when trees <7.5 cm DBH were transferred from SORTIE-ND to PrognosisBC 15-years after MPB-disturbance. For trees <2 m in height, poor estimates of stems ha-¹ where obtained. Despite the shortcomings with respect to trees <2 m tall, the results suggest that linking SORTIE-ND and PrognosisBC is an effective method of building a hybrid model capable of being used in MPB-disturbed forests. However, full parameterization of the SORTIE-ND model is likely needed to obtain accurate estimates for all sizes of natural regeneration.
8

A hybrid model to estimate natural recruitment and growth in stands following mountain pine beetle disturbance

Sattler, Derek Felix 05 1900 (has links)
A method of linking SORTIE-ND and PrognosisBC was developed for the purpose of predicting natural regeneration and forecasting future stand conditions in mountain pine beetle (Dendroctonus ponderosae Hopkins - MPB) attacked stands in the Interior Douglas-fir (IDF) and Sub-Boreal Spruce (SBS) biogeoclimatic ecosystem zones of central and southeastern British Columbia. PrognosisBC, a spatially-implicit growth model, lacked a submodel suitable for predicting natural regeneration in unsalvaged MPB-disturbed stands. To fill this gap, estimates of regeneration (trees <7.5 cm diameter at breast height - DBH) were supplied to PrognosisBC using the light-mediated forest dynamics model SORTIE-ND and the linked model was used to forecast future stand conditions. In order to improve results, a density-dependent system of crown allometry equations to predict crown depth and crown radius was developed and then added to SORTIE-ND. The equations used stand-level measures of stems ha-¹, basal area (m² ha-¹), and the basal area of trees taller than the target tree to explicitly account of the effects of crowding on the crown axes. Additionally, crown radius and crown depth were used as dependent regressors. The equations were fit using a nonlinear three-stage least squares estimator and generally provided good estimates of crown depth and crown radius for lodgepole pine (Pinus contorta var. latifolia), hybrid spruce (Picea engelmannii x glauca (Moench) Voss), Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) and trembling aspen (Populus tremuloides Michx.). Tests of the hybrid model with the improved system of crown allometry equations were performed using reconstructed plot data collected from natural stands disturbed by MPB 25-years ago. The hybrid model provided good estimates (small mean bias and low root mean square error) for the basal area of advance regeneration (2 < DBH < 7.5 cm) for lodgepole pine (Pinus contorta var. latifolia). The best estimates were achieved when trees <7.5 cm DBH were transferred from SORTIE-ND to PrognosisBC 15-years after MPB-disturbance. For trees <2 m in height, poor estimates of stems ha-¹ where obtained. Despite the shortcomings with respect to trees <2 m tall, the results suggest that linking SORTIE-ND and PrognosisBC is an effective method of building a hybrid model capable of being used in MPB-disturbed forests. However, full parameterization of the SORTIE-ND model is likely needed to obtain accurate estimates for all sizes of natural regeneration. / Forestry, Faculty of / Graduate
9

Structural Relations Between Posttraumatic Stress Disorder’s 7-Factor Hybrid Model and Suicide Capacity

Lyu, Xin January 2020 (has links)
No description available.
10

Approaches to Simulation of an Underground Longwall Mine and Implications for Ventilation System Analysis

Zhang, Hongbin 19 June 2015 (has links)
Carefully engineered mine ventilation is critical to the safe operation of underground longwall mines. Currently, there are several options for simulation of mine ventilation. This research was conducted to rapidly simulate an underground longwall mine, especially for the use of tracer gas in an emergency situation. In an emergency situation, limited information about the state of mine ventilation system is known, and it is difficult to make informed decisions about safety of the mine for rescue personnel. With careful planning, tracer gases can be used to remotely ascertain changes in the ventilation system. In the meantime, simulation of the tracer gas can be conducted to understand the airflow behavior for improvements during normal operation. Better informed decisions can be made with the help of both tracer gas technique and different modeling approaches. This research was made up of two main parts. One was a field study conducted in an underground longwall mine in the western U.S. The other one was a simulation of the underground longwall mine with different approaches, such as network modeling and Computational Fluid Dynamics (CFD) models. Networking modeling is the most prevalent modeling technique in the mining industry. However, a gob area, which is a void zone filled with broken rocks after the longwall mining, cannot be simulated in an accurate way with networking modeling. CFD is a powerful tool for modeling different kinds of flows under various situations. However, it requires a significant time investment for the expert user as well as considerable computing power. To take advantage of both network modeling and CFD, the hybrid approach, which is a combination of network modeling and CFD was established. Since tracer gas was released and collected in the field study, the tracer gas concentration profile was separately simulated in network modeling, CFD model, and hybrid model in this study. The simulated results of airflow and tracer gas flow were analyzed and compared with the experimental results from the field study. Two commercial network modeling software packages were analyzed in this study. One of the network modeling software also has the capability to couple with CFD. A two-dimensional (2D) CFD model without gob was built to first analyze the accuracy of CFD. More 2D CFD models with gob were generated to determine how much detail was necessary for the gob model. Several three-dimensional (3D) CFD models with gob were then created. A mesh independence study and a sensitivity study for the porosity and permeability values were created to determine the optimal mesh size, porosity and permeability values for the 3D CFD model, and steady-state simulation and transient simulations were conducted in the 3D CFD models. In the steady-state simulation, a comparison was made between the 3D CFD models with and without taking the diffusivity of SF6 in air into account. Finally, the different simulation techniques were compared to measured field data, and assessed to determine if the hybrid approach was considerably simpler, while also providing results superior to a simple network model. / Master of Science

Page generated in 0.0601 seconds